Topological automorphism groups of compact quantum groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-11

AUTHORS

Alexandru Chirvasitu, Issan Patri

ABSTRACT

We study the topological structure of the automorphism groups of compact quantum groups showing that, in parallel to a classical result due to Iwasawa, the connected component of identity of the automorphism group and of the “inner” automorphism group coincide. For compact matrix quantum groups, which can be thought of as quantum analogues of compact Lie groups, we prove that the inner automorphism group is a compact Lie group and the outer automorphism group is discrete. Applications of this to the study of group actions on compact quantum groups are highlighted. We end by providing examples of compact matrix quantum groups with infinitely-generated fusion rings, in stark contrast with the classical situation. Along the way we study the invariant theory of finite group actions on free Laurent rings and show that the rings of invariants are, in general, not finitely generated. More... »

PAGES

577-598

References to SciGraph publications

  • 1971-06. Ergodic automorphisms ofTn are Bernoulli shifts in ISRAEL JOURNAL OF MATHEMATICS
  • 2018-02-26. Non-existence of faithful isometric action of compact quantum groups on compact, connected Riemannian manifolds in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 1994-12. CQG algebras: A direct algebraic approach to compact quantum groups in LETTERS IN MATHEMATICAL PHYSICS
  • 1978-07. Algebras of invariants of free algebras in ALGEBRA AND LOGIC
  • 1968-01. The representation ring of a compact Lie group in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 2006-08. Closed subgroups of the infinite symmetric group in ALGEBRA UNIVERSALIS
  • 1999-08. Symmetries of a generic coaction in MATHEMATISCHE ANNALEN
  • 1997-12. Le Groupe Quantique Compact Libre U(n) in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-11-28. Hopf Algebra Extensions of Group Algebras and Tambara-Yamagami Categories in ALGEBRAS AND REPRESENTATION THEORY
  • 1935-12. Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring in MATHEMATISCHE ANNALEN
  • 1987-12. Compact matrix pseudogroups in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1995-02. Free products of compact quantum groups in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1979. Group Rings and Their Augmentation Ideals in NONE
  • 1998-07. Quantum Symmetry Groups of Finite Spaces in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00209-017-2032-7

    DOI

    http://dx.doi.org/10.1007/s00209-017-2032-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100315913


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University at Buffalo, 14260-2900, Buffalo, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.273335.3", 
              "name": [
                "Department of Mathematics, University at Buffalo, 14260-2900, Buffalo, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chirvasitu", 
            "givenName": "Alexandru", 
            "id": "sg:person.07751677652.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07751677652.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chennai Mathematical Institute, SIPCOT IT Park, Siruseri, Chennai, India", 
              "id": "http://www.grid.ac/institutes/grid.444722.3", 
              "name": [
                "Chennai Mathematical Institute, SIPCOT IT Park, Siruseri, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patri", 
            "givenName": "Issan", 
            "id": "sg:person.012167515644.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012167515644.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10468-009-9168-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009459826", 
              "https://doi.org/10.1007/s10468-009-9168-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01472217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043200886", 
              "https://doi.org/10.1007/bf01472217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00761142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008702609", 
              "https://doi.org/10.1007/bf00761142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01674783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021219148", 
              "https://doi.org/10.1007/bf01674783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0067186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016685645", 
              "https://doi.org/10.1007/bfb0067186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01219077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003353057", 
              "https://doi.org/10.1007/bf01219077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00012-006-1959-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012860273", 
              "https://doi.org/10.1007/s00012-006-1959-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002080050315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028729329", 
              "https://doi.org/10.1007/s002080050315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02684592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019886018", 
              "https://doi.org/10.1007/bf02684592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048651483", 
              "https://doi.org/10.1007/s002200050385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02101540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018258640", 
              "https://doi.org/10.1007/bf02101540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02771569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024647450", 
              "https://doi.org/10.1007/bf02771569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00039-018-0437-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101223364", 
              "https://doi.org/10.1007/s00039-018-0437-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050219346", 
              "https://doi.org/10.1007/s002200050237"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-01-11", 
        "datePublishedReg": "2018-01-11", 
        "description": "We study the topological structure of the automorphism groups of compact quantum groups showing that, in parallel to a classical result due to Iwasawa, the connected component of identity of the automorphism group and of the \u201cinner\u201d automorphism group coincide. For compact matrix quantum groups, which can be thought of as quantum analogues of compact Lie groups, we prove that the inner automorphism group is a compact Lie group and the outer automorphism group is discrete. Applications of this to the study of group actions on compact quantum groups are highlighted. We end by providing examples of compact matrix quantum groups with infinitely-generated fusion rings, in stark contrast with the classical situation. Along the way we study the invariant theory of finite group actions on free Laurent rings and show that the rings of invariants are, in general, not finitely generated.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00209-017-2032-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5540424", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136443", 
            "issn": [
              "0025-5874", 
              "1432-1823"
            ], 
            "name": "Mathematische Zeitschrift", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "290"
          }
        ], 
        "keywords": [
          "compact quantum groups", 
          "compact matrix quantum groups", 
          "matrix quantum groups", 
          "quantum groups", 
          "compact Lie group", 
          "automorphism group", 
          "Lie groups", 
          "group actions", 
          "finite group actions", 
          "ring of invariants", 
          "inner automorphism group", 
          "fusion rings", 
          "invariant theory", 
          "Laurent rings", 
          "quantum analogue", 
          "outer automorphism group", 
          "classical situation", 
          "classical results", 
          "topological structure", 
          "groups coincide", 
          "Iwasawa", 
          "invariants", 
          "theory", 
          "components of identity", 
          "coincide", 
          "applications", 
          "situation", 
          "way", 
          "results", 
          "structure", 
          "analogues", 
          "ring", 
          "stark contrast", 
          "parallel", 
          "action", 
          "components", 
          "identity", 
          "group", 
          "study", 
          "contrast", 
          "example", 
          "automorphism group coincide", 
          "free Laurent rings", 
          "Topological automorphism groups"
        ], 
        "name": "Topological automorphism groups of compact quantum groups", 
        "pagination": "577-598", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100315913"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00209-017-2032-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00209-017-2032-7", 
          "https://app.dimensions.ai/details/publication/pub.1100315913"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_777.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00209-017-2032-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-2032-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-2032-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-2032-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-2032-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      22 PREDICATES      83 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00209-017-2032-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6d9591851bda40ea9eec618dc1e0133e
    4 schema:citation sg:pub.10.1007/bf00761142
    5 sg:pub.10.1007/bf01219077
    6 sg:pub.10.1007/bf01472217
    7 sg:pub.10.1007/bf01674783
    8 sg:pub.10.1007/bf02101540
    9 sg:pub.10.1007/bf02684592
    10 sg:pub.10.1007/bf02771569
    11 sg:pub.10.1007/bfb0067186
    12 sg:pub.10.1007/s00012-006-1959-z
    13 sg:pub.10.1007/s00039-018-0437-z
    14 sg:pub.10.1007/s002080050315
    15 sg:pub.10.1007/s002200050237
    16 sg:pub.10.1007/s002200050385
    17 sg:pub.10.1007/s10468-009-9168-z
    18 schema:datePublished 2018-01-11
    19 schema:datePublishedReg 2018-01-11
    20 schema:description We study the topological structure of the automorphism groups of compact quantum groups showing that, in parallel to a classical result due to Iwasawa, the connected component of identity of the automorphism group and of the “inner” automorphism group coincide. For compact matrix quantum groups, which can be thought of as quantum analogues of compact Lie groups, we prove that the inner automorphism group is a compact Lie group and the outer automorphism group is discrete. Applications of this to the study of group actions on compact quantum groups are highlighted. We end by providing examples of compact matrix quantum groups with infinitely-generated fusion rings, in stark contrast with the classical situation. Along the way we study the invariant theory of finite group actions on free Laurent rings and show that the rings of invariants are, in general, not finitely generated.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N511daf79d5054c389bd04e7eef68ddc0
    25 Nee4b4a5227e74e289439382688b9d99a
    26 sg:journal.1136443
    27 schema:keywords Iwasawa
    28 Laurent rings
    29 Lie groups
    30 Topological automorphism groups
    31 action
    32 analogues
    33 applications
    34 automorphism group
    35 automorphism group coincide
    36 classical results
    37 classical situation
    38 coincide
    39 compact Lie group
    40 compact matrix quantum groups
    41 compact quantum groups
    42 components
    43 components of identity
    44 contrast
    45 example
    46 finite group actions
    47 free Laurent rings
    48 fusion rings
    49 group
    50 group actions
    51 groups coincide
    52 identity
    53 inner automorphism group
    54 invariant theory
    55 invariants
    56 matrix quantum groups
    57 outer automorphism group
    58 parallel
    59 quantum analogue
    60 quantum groups
    61 results
    62 ring
    63 ring of invariants
    64 situation
    65 stark contrast
    66 structure
    67 study
    68 theory
    69 topological structure
    70 way
    71 schema:name Topological automorphism groups of compact quantum groups
    72 schema:pagination 577-598
    73 schema:productId N9bca9c93d1fb44928439033bc6c69141
    74 Ndeb1f54e4928424eb9a04dc560fd0eaa
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100315913
    76 https://doi.org/10.1007/s00209-017-2032-7
    77 schema:sdDatePublished 2021-11-01T18:34
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N9a94d211ba2b426a86986df66542b824
    80 schema:url https://doi.org/10.1007/s00209-017-2032-7
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N1c19307f929149a4bf54008e0b035e5c rdf:first sg:person.012167515644.69
    85 rdf:rest rdf:nil
    86 N511daf79d5054c389bd04e7eef68ddc0 schema:volumeNumber 290
    87 rdf:type schema:PublicationVolume
    88 N6d9591851bda40ea9eec618dc1e0133e rdf:first sg:person.07751677652.11
    89 rdf:rest N1c19307f929149a4bf54008e0b035e5c
    90 N9a94d211ba2b426a86986df66542b824 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N9bca9c93d1fb44928439033bc6c69141 schema:name dimensions_id
    93 schema:value pub.1100315913
    94 rdf:type schema:PropertyValue
    95 Ndeb1f54e4928424eb9a04dc560fd0eaa schema:name doi
    96 schema:value 10.1007/s00209-017-2032-7
    97 rdf:type schema:PropertyValue
    98 Nee4b4a5227e74e289439382688b9d99a schema:issueNumber 1-2
    99 rdf:type schema:PublicationIssue
    100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Mathematical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Pure Mathematics
    105 rdf:type schema:DefinedTerm
    106 sg:grant.5540424 http://pending.schema.org/fundedItem sg:pub.10.1007/s00209-017-2032-7
    107 rdf:type schema:MonetaryGrant
    108 sg:journal.1136443 schema:issn 0025-5874
    109 1432-1823
    110 schema:name Mathematische Zeitschrift
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.012167515644.69 schema:affiliation grid-institutes:grid.444722.3
    114 schema:familyName Patri
    115 schema:givenName Issan
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012167515644.69
    117 rdf:type schema:Person
    118 sg:person.07751677652.11 schema:affiliation grid-institutes:grid.273335.3
    119 schema:familyName Chirvasitu
    120 schema:givenName Alexandru
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07751677652.11
    122 rdf:type schema:Person
    123 sg:pub.10.1007/bf00761142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008702609
    124 https://doi.org/10.1007/bf00761142
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01219077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003353057
    127 https://doi.org/10.1007/bf01219077
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01472217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043200886
    130 https://doi.org/10.1007/bf01472217
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf01674783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021219148
    133 https://doi.org/10.1007/bf01674783
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf02101540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018258640
    136 https://doi.org/10.1007/bf02101540
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf02684592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019886018
    139 https://doi.org/10.1007/bf02684592
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf02771569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024647450
    142 https://doi.org/10.1007/bf02771569
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bfb0067186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016685645
    145 https://doi.org/10.1007/bfb0067186
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00012-006-1959-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012860273
    148 https://doi.org/10.1007/s00012-006-1959-z
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00039-018-0437-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101223364
    151 https://doi.org/10.1007/s00039-018-0437-z
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s002080050315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028729329
    154 https://doi.org/10.1007/s002080050315
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s002200050237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050219346
    157 https://doi.org/10.1007/s002200050237
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s002200050385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048651483
    160 https://doi.org/10.1007/s002200050385
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s10468-009-9168-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009459826
    163 https://doi.org/10.1007/s10468-009-9168-z
    164 rdf:type schema:CreativeWork
    165 grid-institutes:grid.273335.3 schema:alternateName Department of Mathematics, University at Buffalo, 14260-2900, Buffalo, NY, USA
    166 schema:name Department of Mathematics, University at Buffalo, 14260-2900, Buffalo, NY, USA
    167 rdf:type schema:Organization
    168 grid-institutes:grid.444722.3 schema:alternateName Chennai Mathematical Institute, SIPCOT IT Park, Siruseri, Chennai, India
    169 schema:name Chennai Mathematical Institute, SIPCOT IT Park, Siruseri, Chennai, India
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...