Explicit Hodge decomposition on Riemann surfaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Gennadi M. Henkin, Peter L. Polyakov

ABSTRACT

We present a construction of an explicit Hodge decomposition for ∂¯-operator on Riemann surfaces.

PAGES

711-728

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-017-1972-2

DOI

http://dx.doi.org/10.1007/s00209-017-1972-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092416226


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central Economics and Mathematics Institute", 
          "id": "https://www.grid.ac/institutes/grid.465303.7", 
          "name": [
            "Institut de Mathematiques, Universite Pierre et Marie Curie, BC247, 75252, Paris Cedex 05, France", 
            "CEMI Acad. Sc., 117418, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henkin", 
        "givenName": "Gennadi M.", 
        "id": "sg:person.07652754761.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652754761.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wyoming", 
          "id": "https://www.grid.ac/institutes/grid.135963.b", 
          "name": [
            "Department of Mathematics, University of Wyoming, 1000 E University Ave, 82071, Laramie, WY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Polyakov", 
        "givenName": "Peter L.", 
        "id": "sg:person.012512023053.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512023053.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-3849-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329144", 
          "https://doi.org/10.1007/978-1-4757-3849-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3849-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329144", 
          "https://doi.org/10.1007/978-1-4757-3849-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01472212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011731827", 
          "https://doi.org/10.1007/bf01472212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0059843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014843163", 
          "https://doi.org/10.1007/bfb0059843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-011-0737-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019351969", 
          "https://doi.org/10.1007/s00208-011-0737-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-012-0380-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022926006", 
          "https://doi.org/10.1007/s00222-012-0380-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02684652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025606236", 
          "https://doi.org/10.1007/bf02684652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01349966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028603602", 
          "https://doi.org/10.1007/bf01349966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-015-9643-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029952554", 
          "https://doi.org/10.1007/s12220-015-9643-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1041539414", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0068349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041539414", 
          "https://doi.org/10.1007/bfb0068349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0068349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041539414", 
          "https://doi.org/10.1007/bfb0068349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01350129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041911234", 
          "https://doi.org/10.1007/bf01350129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1967-11744-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042323546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0080482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044176333", 
          "https://doi.org/10.1007/bfb0080482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0080482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044176333", 
          "https://doi.org/10.1007/bfb0080482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-010-9158-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047793468", 
          "https://doi.org/10.1007/s12220-010-9158-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02406742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049222327", 
          "https://doi.org/10.1007/bf02406742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1971v014n03abeh002623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058199042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-40-00725-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064416127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-98-09315-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5565/publmat_32188_01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072982151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-11041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073613169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7146/math.scand.a-12211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073614016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.1515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083660460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61705-8_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089497198", 
          "https://doi.org/10.1007/978-3-642-61705-8_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "We present a construction of an explicit Hodge decomposition for \u2202\u00af-operator on Riemann surfaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-017-1972-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "289"
      }
    ], 
    "name": "Explicit Hodge decomposition on Riemann surfaces", 
    "pagination": "711-728", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a1f9f4e69794fbf3ea76f0b53102656ab78be176e9c55f3639b66b10641ac23"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-017-1972-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092416226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-017-1972-2", 
      "https://app.dimensions.ai/details/publication/pub.1092416226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00209-017-1972-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1972-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1972-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1972-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1972-2'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      20 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-017-1972-2 schema:author Nca3649e4b7f04151915294440097f353
2 schema:citation sg:pub.10.1007/978-1-4757-3849-0
3 sg:pub.10.1007/978-3-642-61705-8_1
4 sg:pub.10.1007/bf01349966
5 sg:pub.10.1007/bf01350129
6 sg:pub.10.1007/bf01472212
7 sg:pub.10.1007/bf02406742
8 sg:pub.10.1007/bf02684652
9 sg:pub.10.1007/bfb0059843
10 sg:pub.10.1007/bfb0068349
11 sg:pub.10.1007/bfb0080482
12 sg:pub.10.1007/s00208-011-0737-1
13 sg:pub.10.1007/s00222-012-0380-9
14 sg:pub.10.1007/s12220-010-9158-8
15 sg:pub.10.1007/s12220-015-9643-1
16 https://app.dimensions.ai/details/publication/pub.1041539414
17 https://doi.org/10.1070/sm1971v014n03abeh002623
18 https://doi.org/10.1090/s0002-9904-1967-11744-0
19 https://doi.org/10.1215/s0012-7094-40-00725-6
20 https://doi.org/10.1215/s0012-7094-98-09315-2
21 https://doi.org/10.2307/1969552
22 https://doi.org/10.2307/1969701
23 https://doi.org/10.2307/2373701
24 https://doi.org/10.24033/bsmf.1515
25 https://doi.org/10.5565/publmat_32188_01
26 https://doi.org/10.7146/math.scand.a-11041
27 https://doi.org/10.7146/math.scand.a-12211
28 schema:datePublished 2018-06
29 schema:datePublishedReg 2018-06-01
30 schema:description We present a construction of an explicit Hodge decomposition for ∂¯-operator on Riemann surfaces.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N8e331d12959142538d48f001e12c232d
35 Nffe2c2e12cca447c85442cb2f21b12b1
36 sg:journal.1136443
37 schema:name Explicit Hodge decomposition on Riemann surfaces
38 schema:pagination 711-728
39 schema:productId N98bf3ef9d5794b35a3970e0d5c5ea85b
40 Nd3789c18d98442fe93c876e8097c4e4f
41 Nec27440a5b55455287ba338e9b406c9e
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092416226
43 https://doi.org/10.1007/s00209-017-1972-2
44 schema:sdDatePublished 2019-04-10T15:14
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N0f9662c757b64c3b8799c79f0d922f28
47 schema:url https://link.springer.com/10.1007%2Fs00209-017-1972-2
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0f9662c757b64c3b8799c79f0d922f28 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N8e331d12959142538d48f001e12c232d schema:issueNumber 1-2
54 rdf:type schema:PublicationIssue
55 N98bf3ef9d5794b35a3970e0d5c5ea85b schema:name dimensions_id
56 schema:value pub.1092416226
57 rdf:type schema:PropertyValue
58 Na722c44d214847d0873b7b6908ba64ab rdf:first sg:person.012512023053.55
59 rdf:rest rdf:nil
60 Nca3649e4b7f04151915294440097f353 rdf:first sg:person.07652754761.63
61 rdf:rest Na722c44d214847d0873b7b6908ba64ab
62 Nd3789c18d98442fe93c876e8097c4e4f schema:name readcube_id
63 schema:value 1a1f9f4e69794fbf3ea76f0b53102656ab78be176e9c55f3639b66b10641ac23
64 rdf:type schema:PropertyValue
65 Nec27440a5b55455287ba338e9b406c9e schema:name doi
66 schema:value 10.1007/s00209-017-1972-2
67 rdf:type schema:PropertyValue
68 Nffe2c2e12cca447c85442cb2f21b12b1 schema:volumeNumber 289
69 rdf:type schema:PublicationVolume
70 sg:journal.1136443 schema:issn 0025-5874
71 1432-1823
72 schema:name Mathematische Zeitschrift
73 rdf:type schema:Periodical
74 sg:person.012512023053.55 schema:affiliation https://www.grid.ac/institutes/grid.135963.b
75 schema:familyName Polyakov
76 schema:givenName Peter L.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012512023053.55
78 rdf:type schema:Person
79 sg:person.07652754761.63 schema:affiliation https://www.grid.ac/institutes/grid.465303.7
80 schema:familyName Henkin
81 schema:givenName Gennadi M.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07652754761.63
83 rdf:type schema:Person
84 sg:pub.10.1007/978-1-4757-3849-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329144
85 https://doi.org/10.1007/978-1-4757-3849-0
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-642-61705-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089497198
88 https://doi.org/10.1007/978-3-642-61705-8_1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01349966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028603602
91 https://doi.org/10.1007/bf01349966
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01350129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041911234
94 https://doi.org/10.1007/bf01350129
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01472212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011731827
97 https://doi.org/10.1007/bf01472212
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02406742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049222327
100 https://doi.org/10.1007/bf02406742
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02684652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025606236
103 https://doi.org/10.1007/bf02684652
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bfb0059843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014843163
106 https://doi.org/10.1007/bfb0059843
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bfb0068349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041539414
109 https://doi.org/10.1007/bfb0068349
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bfb0080482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044176333
112 https://doi.org/10.1007/bfb0080482
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00208-011-0737-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019351969
115 https://doi.org/10.1007/s00208-011-0737-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00222-012-0380-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022926006
118 https://doi.org/10.1007/s00222-012-0380-9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s12220-010-9158-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047793468
121 https://doi.org/10.1007/s12220-010-9158-8
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s12220-015-9643-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029952554
124 https://doi.org/10.1007/s12220-015-9643-1
125 rdf:type schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1041539414 schema:CreativeWork
127 https://doi.org/10.1070/sm1971v014n03abeh002623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058199042
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1090/s0002-9904-1967-11744-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042323546
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1215/s0012-7094-40-00725-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064416127
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1215/s0012-7094-98-09315-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420426
134 rdf:type schema:CreativeWork
135 https://doi.org/10.2307/1969552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674927
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2307/1969701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675068
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2307/2373701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900231
140 rdf:type schema:CreativeWork
141 https://doi.org/10.24033/bsmf.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660460
142 rdf:type schema:CreativeWork
143 https://doi.org/10.5565/publmat_32188_01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072982151
144 rdf:type schema:CreativeWork
145 https://doi.org/10.7146/math.scand.a-11041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073613169
146 rdf:type schema:CreativeWork
147 https://doi.org/10.7146/math.scand.a-12211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614016
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.135963.b schema:alternateName University of Wyoming
150 schema:name Department of Mathematics, University of Wyoming, 1000 E University Ave, 82071, Laramie, WY, USA
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.465303.7 schema:alternateName Central Economics and Mathematics Institute
153 schema:name CEMI Acad. Sc., 117418, Moscow, Russia
154 Institut de Mathematiques, Universite Pierre et Marie Curie, BC247, 75252, Paris Cedex 05, France
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...