2018-04
AUTHORSLuigi Ambrosio, Jérôme Bertrand
ABSTRACTIn this paper, we extend the DC calculus introduced by Perelman on finite dimensional Alexandrov spaces with curvature bounded below. Among other things, our results allow us to define the Hessian and the Laplacian of DC functions (including distance functions as a particular instance) as a measure-valued tensor and a Radon measure respectively. We show that these objects share various properties with their analogues on smooth Riemannian manifolds. More... »
PAGES1037-1080
http://scigraph.springernature.com/pub.10.1007/s00209-017-1926-8
DOIhttp://dx.doi.org/10.1007/s00209-017-1926-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092125343
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Ambrosio",
"givenName": "Luigi",
"id": "sg:person.012621721115.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Toulouse Mathematics Institute",
"id": "https://www.grid.ac/institutes/grid.462146.3",
"name": [
"Institut de Math\u00e9matiques de Toulouse, UMR CNRS 5219, Universit\u00e9 Toulouse III, 31062, Toulouse Cedex 9, France"
],
"type": "Organization"
},
"familyName": "Bertrand",
"givenName": "J\u00e9r\u00f4me",
"id": "sg:person.014332142425.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014332142425.75"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s002090100252",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009164940",
"https://doi.org/10.1007/s002090100252"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1032041249",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-18855-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032041249",
"https://doi.org/10.1007/978-3-642-18855-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-18855-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032041249",
"https://doi.org/10.1007/978-3-642-18855-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-00227-9_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047708227",
"https://doi.org/10.1007/978-3-319-00227-9_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/agms-2016-0012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052383928"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1053706088",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-97026-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053706088",
"https://doi.org/10.1007/978-3-642-97026-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-97026-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053706088",
"https://doi.org/10.1007/978-3-642-97026-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/14-aop907",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064394505"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.1959.9.707",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069062771"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.2014.270.151",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069072605"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/sdg.2006.v11.n1.a6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072463927"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214455075",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084460022"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/memo/1196",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092559620"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/gsm/033",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098730588"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-04",
"datePublishedReg": "2018-04-01",
"description": "In this paper, we extend the DC calculus introduced by Perelman on finite dimensional Alexandrov spaces with curvature bounded below. Among other things, our results allow us to define the Hessian and the Laplacian of DC functions (including distance functions as a particular instance) as a measure-valued tensor and a Radon measure respectively. We show that these objects share various properties with their analogues on smooth Riemannian manifolds.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00209-017-1926-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136443",
"issn": [
"0025-5874",
"1432-1823"
],
"name": "Mathematische Zeitschrift",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "288"
}
],
"name": "DC calculus",
"pagination": "1037-1080",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"c264f6f6621231aa712492a2f7fac15c301dcbcd1085f473cb303b6429a2afc4"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00209-017-1926-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092125343"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00209-017-1926-8",
"https://app.dimensions.ai/details/publication/pub.1092125343"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T15:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000555.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00209-017-1926-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1926-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1926-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1926-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-017-1926-8'
This table displays all metadata directly associated to this object as RDF triples.
115 TRIPLES
21 PREDICATES
41 URIs
19 LITERALS
7 BLANK NODES