Canonical bases for the quantum supergroups U(glm|n) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

Jie Du, Haixia Gu

ABSTRACT

We give a combinatorial construction for the canonical bases of the ±-parts of the quantum enveloping superalgebra U(glm|n) and discuss their relationship with the Kazhdan–Lusztig bases for the quantum Schur superalgebras S(m|n,r) introduced in Du and Rui (J Pure Appl Algebra 215:2715–2737, 2011). We will also extend this relationship to the induced bases for simple polynomial representations of U(glm|n). More... »

PAGES

631-660

References to SciGraph publications

  • 1979-06. Representations of Coxeter groups and Hecke algebras in INVENTIONES MATHEMATICAE
  • 1996-12. Cellular algebras in INVENTIONES MATHEMATICAE
  • 2004-04. Dual canonical bases, quantum shuffles and q-characters in MATHEMATISCHE ZEITSCHRIFT
  • 2009-03. The quantum general linear supergroup, canonical bases and Kazhdan-Lusztig polynomials in SCIENCE IN CHINA SERIES A MATHEMATICS
  • 1986-04. A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation in LETTERS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    Mathematische Zeitschrift

    ISSUE

    3-4

    VOLUME

    281

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00209-015-1499-3

    DOI

    http://dx.doi.org/10.1007/s00209-015-1499-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020996078


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "UNSW Australia", 
              "id": "https://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "School of Mathematics and Statistics, University of New South Wales, 2052, Sydney, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Jie", 
            "id": "sg:person.015222424361.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222424361.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Huzhou University", 
              "id": "https://www.grid.ac/institutes/grid.411440.4", 
              "name": [
                "Department of Mathematics, East China Normal University, 200062, Shanghai, China", 
                "Huzhou University, 313000, Huzhou, Zhejiang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gu", 
            "givenName": "Haixia", 
            "id": "sg:person.012300572021.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300572021.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00400222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005564454", 
              "https://doi.org/10.1007/bf00400222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00400222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005564454", 
              "https://doi.org/10.1007/bf00400222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-00-00321-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011296100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2013.12.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015903388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s1088-4165-2014-00453-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017768009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-3577(02)80026-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026478775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-1990-1035415-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027548652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2005.11.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029386323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01390031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029855172", 
              "https://doi.org/10.1007/bf01390031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11425-008-0150-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033238182", 
              "https://doi.org/10.1007/s11425-008-0150-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11425-008-0150-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033238182", 
              "https://doi.org/10.1007/s11425-008-0150-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpaa.2011.03.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034112800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041790561", 
              "https://doi.org/10.1007/bf01232365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-003-0609-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046184306", 
              "https://doi.org/10.1007/s00209-003-0609-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.530198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058107189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-90-06124-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.2013.262.285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069072417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2977/prims/1195166275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070934619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/qt/81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072320063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/248/03818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089204253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/surv/150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098735053"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "We give a combinatorial construction for the canonical bases of the \u00b1-parts of the quantum enveloping superalgebra U(glm|n) and discuss their relationship with the Kazhdan\u2013Lusztig bases for the quantum Schur superalgebras S(m|n,r) introduced in Du and Rui (J Pure Appl Algebra 215:2715\u20132737, 2011). We will also extend this relationship to the induced bases for simple polynomial representations of U(glm|n).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00209-015-1499-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136443", 
            "issn": [
              "0025-5874", 
              "1432-1823"
            ], 
            "name": "Mathematische Zeitschrift", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "281"
          }
        ], 
        "name": "Canonical bases for the quantum supergroups U(glm|n)", 
        "pagination": "631-660", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6409921da633e9d805bc7d4790cd9be7ab58360caf5a3d8bfe7826a3ac78b06e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00209-015-1499-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020996078"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00209-015-1499-3", 
          "https://app.dimensions.ai/details/publication/pub.1020996078"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000531.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00209-015-1499-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-015-1499-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-015-1499-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-015-1499-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-015-1499-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    134 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00209-015-1499-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N64782d49d55e4cd1b0ad53d9d0ec2071
    4 schema:citation sg:pub.10.1007/bf00400222
    5 sg:pub.10.1007/bf01232365
    6 sg:pub.10.1007/bf01390031
    7 sg:pub.10.1007/s00209-003-0609-9
    8 sg:pub.10.1007/s11425-008-0150-8
    9 https://doi.org/10.1016/j.jalgebra.2005.11.023
    10 https://doi.org/10.1016/j.jalgebra.2013.12.034
    11 https://doi.org/10.1016/j.jpaa.2011.03.015
    12 https://doi.org/10.1016/s0019-3577(02)80026-x
    13 https://doi.org/10.1063/1.530198
    14 https://doi.org/10.1090/conm/248/03818
    15 https://doi.org/10.1090/s0894-0347-00-00321-0
    16 https://doi.org/10.1090/s0894-0347-1990-1035415-6
    17 https://doi.org/10.1090/s1088-4165-2014-00453-9
    18 https://doi.org/10.1090/surv/150
    19 https://doi.org/10.1215/s0012-7094-90-06124-1
    20 https://doi.org/10.2140/pjm.2013.262.285
    21 https://doi.org/10.2977/prims/1195166275
    22 https://doi.org/10.4171/qt/81
    23 schema:datePublished 2015-12
    24 schema:datePublishedReg 2015-12-01
    25 schema:description We give a combinatorial construction for the canonical bases of the ±-parts of the quantum enveloping superalgebra U(glm|n) and discuss their relationship with the Kazhdan–Lusztig bases for the quantum Schur superalgebras S(m|n,r) introduced in Du and Rui (J Pure Appl Algebra 215:2715–2737, 2011). We will also extend this relationship to the induced bases for simple polynomial representations of U(glm|n).
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N1d266286ee4b4ab5a0b3fa8ae1147662
    30 N2c4268f104d14c4583c2fe425d376c30
    31 sg:journal.1136443
    32 schema:name Canonical bases for the quantum supergroups U(glm|n)
    33 schema:pagination 631-660
    34 schema:productId Na8f3ee35a920427f884184a14d5b2db5
    35 Nc08ec781093549f1afa6a3edceea5cff
    36 Nd59c38523c094b6faa290898a46838f3
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020996078
    38 https://doi.org/10.1007/s00209-015-1499-3
    39 schema:sdDatePublished 2019-04-10T15:55
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N80aed8b7aeff48fcb20a787ab3de3a7e
    42 schema:url http://link.springer.com/10.1007%2Fs00209-015-1499-3
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N06ec0bedcbb8487c9b9105d755a9a803 rdf:first sg:person.012300572021.52
    47 rdf:rest rdf:nil
    48 N1d266286ee4b4ab5a0b3fa8ae1147662 schema:issueNumber 3-4
    49 rdf:type schema:PublicationIssue
    50 N2c4268f104d14c4583c2fe425d376c30 schema:volumeNumber 281
    51 rdf:type schema:PublicationVolume
    52 N64782d49d55e4cd1b0ad53d9d0ec2071 rdf:first sg:person.015222424361.90
    53 rdf:rest N06ec0bedcbb8487c9b9105d755a9a803
    54 N80aed8b7aeff48fcb20a787ab3de3a7e schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Na8f3ee35a920427f884184a14d5b2db5 schema:name readcube_id
    57 schema:value 6409921da633e9d805bc7d4790cd9be7ab58360caf5a3d8bfe7826a3ac78b06e
    58 rdf:type schema:PropertyValue
    59 Nc08ec781093549f1afa6a3edceea5cff schema:name dimensions_id
    60 schema:value pub.1020996078
    61 rdf:type schema:PropertyValue
    62 Nd59c38523c094b6faa290898a46838f3 schema:name doi
    63 schema:value 10.1007/s00209-015-1499-3
    64 rdf:type schema:PropertyValue
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Pure Mathematics
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1136443 schema:issn 0025-5874
    72 1432-1823
    73 schema:name Mathematische Zeitschrift
    74 rdf:type schema:Periodical
    75 sg:person.012300572021.52 schema:affiliation https://www.grid.ac/institutes/grid.411440.4
    76 schema:familyName Gu
    77 schema:givenName Haixia
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300572021.52
    79 rdf:type schema:Person
    80 sg:person.015222424361.90 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
    81 schema:familyName Du
    82 schema:givenName Jie
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015222424361.90
    84 rdf:type schema:Person
    85 sg:pub.10.1007/bf00400222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005564454
    86 https://doi.org/10.1007/bf00400222
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf01232365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041790561
    89 https://doi.org/10.1007/bf01232365
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01390031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029855172
    92 https://doi.org/10.1007/bf01390031
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00209-003-0609-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046184306
    95 https://doi.org/10.1007/s00209-003-0609-9
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s11425-008-0150-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238182
    98 https://doi.org/10.1007/s11425-008-0150-8
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/j.jalgebra.2005.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029386323
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.jalgebra.2013.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015903388
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.jpaa.2011.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034112800
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/s0019-3577(02)80026-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026478775
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1063/1.530198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058107189
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1090/conm/248/03818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089204253
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1090/s0894-0347-00-00321-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011296100
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1090/s0894-0347-1990-1035415-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027548652
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1090/s1088-4165-2014-00453-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017768009
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1090/surv/150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098735053
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1215/s0012-7094-90-06124-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419626
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.2140/pjm.2013.262.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069072417
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.2977/prims/1195166275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070934619
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.4171/qt/81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320063
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
    129 schema:name School of Mathematics and Statistics, University of New South Wales, 2052, Sydney, NSW, Australia
    130 rdf:type schema:Organization
    131 https://www.grid.ac/institutes/grid.411440.4 schema:alternateName Huzhou University
    132 schema:name Department of Mathematics, East China Normal University, 200062, Shanghai, China
    133 Huzhou University, 313000, Huzhou, Zhejiang, China
    134 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...