Automorphic products of singular weight for simple lattices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02

AUTHORS

Moritz Dittmann, Heike Hagemeier, Markus Schwagenscheidt

ABSTRACT

We classify the simple even lattices of square free level and signature (2,n),n≥4. A lattice is called simple if the space of cusp forms of weight 1+n/2 for the dual Weil representation of the lattice is trivial. For a simple lattice every formal principal part obeying obvious conditions is the principal part of a vector valued modular form. Using this, we determine all holomorphic Borcherds products of singular weight (arising from vector valued modular forms with non-negative principal part) for the simple lattices. We construct the corresponding vector valued modular forms by eta products and compute expansions of the automorphic products at different cusps. More... »

PAGES

585-603

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-014-1383-6

DOI

http://dx.doi.org/10.1007/s00209-014-1383-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044298937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Fachbereich Mathematik, Technische Universit\u00e4t Darmstadt, 64289, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dittmann", 
        "givenName": "Moritz", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Office for Information Security", 
          "id": "https://www.grid.ac/institutes/grid.432850.8", 
          "name": [
            "Bundesamt f\u00fcr Sicherheit in der Informationstechnik, Postfach 200363, 53133, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hagemeier", 
        "givenName": "Heike", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Fachbereich Mathematik, Technische Universit\u00e4t Darmstadt, 64289, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwagenscheidt", 
        "givenName": "Markus", 
        "id": "sg:person.016332604265.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332604265.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/aima.2001.2020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003799427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-006-0500-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011455918", 
          "https://doi.org/10.1007/s00222-006-0500-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017906081", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017906081", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01241126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025237257", 
          "https://doi.org/10.1007/bf01241126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032505399", 
          "https://doi.org/10.1007/s002220050232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016357029843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049708474", 
          "https://doi.org/10.1023/a:1016357029843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s229-001-8027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310720", 
          "https://doi.org/10.1007/s229-001-8027-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imrn/rnn166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059690381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-00-10424-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-99-09710-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420503"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02", 
    "datePublishedReg": "2015-02-01", 
    "description": "We classify the simple even lattices of square free level and signature (2,n),n\u22654. A lattice is called simple if the space of cusp forms of weight 1+n/2 for the dual Weil representation of the lattice is trivial. For a simple lattice every formal principal part obeying obvious conditions is the principal part of a vector valued modular form. Using this, we determine all holomorphic Borcherds products of singular weight (arising from vector valued modular forms with non-negative principal part) for the simple lattices. We construct the corresponding vector valued modular forms by eta products and compute expansions of the automorphic products at different cusps.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-014-1383-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "279"
      }
    ], 
    "name": "Automorphic products of singular weight for simple lattices", 
    "pagination": "585-603", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d302d9b3b356deb340377432bc47ab30f73cfa92bdfc1683e12a71c1ca95f7a3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-014-1383-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044298937"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-014-1383-6", 
      "https://app.dimensions.ai/details/publication/pub.1044298937"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00209-014-1383-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1383-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1383-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1383-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1383-6'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-014-1383-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N554e1ef13f8347798b2e68eded163fec
4 schema:citation sg:pub.10.1007/bf01241126
5 sg:pub.10.1007/s00222-006-0500-5
6 sg:pub.10.1007/s002220050232
7 sg:pub.10.1007/s229-001-8027-1
8 sg:pub.10.1023/a:1016357029843
9 https://app.dimensions.ai/details/publication/pub.1017906081
10 https://app.dimensions.ai/details/publication/pub.1039164941
11 https://doi.org/10.1006/aima.2001.2020
12 https://doi.org/10.1093/imrn/rnn166
13 https://doi.org/10.1215/s0012-7094-00-10424-3
14 https://doi.org/10.1215/s0012-7094-99-09710-7
15 schema:datePublished 2015-02
16 schema:datePublishedReg 2015-02-01
17 schema:description We classify the simple even lattices of square free level and signature (2,n),n≥4. A lattice is called simple if the space of cusp forms of weight 1+n/2 for the dual Weil representation of the lattice is trivial. For a simple lattice every formal principal part obeying obvious conditions is the principal part of a vector valued modular form. Using this, we determine all holomorphic Borcherds products of singular weight (arising from vector valued modular forms with non-negative principal part) for the simple lattices. We construct the corresponding vector valued modular forms by eta products and compute expansions of the automorphic products at different cusps.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N895af3ef3e4146209c8cf0308b9649a3
22 Ne2487550b82840ee8a8119d3720c5eac
23 sg:journal.1136443
24 schema:name Automorphic products of singular weight for simple lattices
25 schema:pagination 585-603
26 schema:productId N2e5899e376134bcba4eec72567885596
27 N37288aee2ba64bbb95e765a315513654
28 Nb27a25f7e079437aa07493745c4e6d62
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298937
30 https://doi.org/10.1007/s00209-014-1383-6
31 schema:sdDatePublished 2019-04-11T00:20
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N32c28335bc0d48cdb73da580ceb9194f
34 schema:url http://link.springer.com/10.1007%2Fs00209-014-1383-6
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2c0027ce29b34c0d91c20878c0c417b3 rdf:first N504ee3cf949c4fd4bbf25a0365c761fe
39 rdf:rest Ne947d4a772164c00a07398609f0f9765
40 N2e5899e376134bcba4eec72567885596 schema:name doi
41 schema:value 10.1007/s00209-014-1383-6
42 rdf:type schema:PropertyValue
43 N32c28335bc0d48cdb73da580ceb9194f schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N37288aee2ba64bbb95e765a315513654 schema:name dimensions_id
46 schema:value pub.1044298937
47 rdf:type schema:PropertyValue
48 N504ee3cf949c4fd4bbf25a0365c761fe schema:affiliation https://www.grid.ac/institutes/grid.432850.8
49 schema:familyName Hagemeier
50 schema:givenName Heike
51 rdf:type schema:Person
52 N554e1ef13f8347798b2e68eded163fec rdf:first N93fb5f9e39f84cabb5af195c18ae84c2
53 rdf:rest N2c0027ce29b34c0d91c20878c0c417b3
54 N895af3ef3e4146209c8cf0308b9649a3 schema:volumeNumber 279
55 rdf:type schema:PublicationVolume
56 N93fb5f9e39f84cabb5af195c18ae84c2 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
57 schema:familyName Dittmann
58 schema:givenName Moritz
59 rdf:type schema:Person
60 Nb27a25f7e079437aa07493745c4e6d62 schema:name readcube_id
61 schema:value d302d9b3b356deb340377432bc47ab30f73cfa92bdfc1683e12a71c1ca95f7a3
62 rdf:type schema:PropertyValue
63 Ne2487550b82840ee8a8119d3720c5eac schema:issueNumber 1-2
64 rdf:type schema:PublicationIssue
65 Ne947d4a772164c00a07398609f0f9765 rdf:first sg:person.016332604265.51
66 rdf:rest rdf:nil
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136443 schema:issn 0025-5874
74 1432-1823
75 schema:name Mathematische Zeitschrift
76 rdf:type schema:Periodical
77 sg:person.016332604265.51 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
78 schema:familyName Schwagenscheidt
79 schema:givenName Markus
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332604265.51
81 rdf:type schema:Person
82 sg:pub.10.1007/bf01241126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025237257
83 https://doi.org/10.1007/bf01241126
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s00222-006-0500-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011455918
86 https://doi.org/10.1007/s00222-006-0500-5
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s002220050232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032505399
89 https://doi.org/10.1007/s002220050232
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s229-001-8027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310720
92 https://doi.org/10.1007/s229-001-8027-1
93 rdf:type schema:CreativeWork
94 sg:pub.10.1023/a:1016357029843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049708474
95 https://doi.org/10.1023/a:1016357029843
96 rdf:type schema:CreativeWork
97 https://app.dimensions.ai/details/publication/pub.1017906081 schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1039164941 schema:CreativeWork
99 https://doi.org/10.1006/aima.2001.2020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003799427
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1093/imrn/rnn166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059690381
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1215/s0012-7094-00-10424-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415130
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1215/s0012-7094-99-09710-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420503
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.432850.8 schema:alternateName Federal Office for Information Security
108 schema:name Bundesamt für Sicherheit in der Informationstechnik, Postfach 200363, 53133, Bonn, Germany
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
111 schema:name Fachbereich Mathematik, Technische Universität Darmstadt, 64289, Darmstadt, Germany
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...