Hurwitz ball quotients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-10

AUTHORS

Matthew Stover

ABSTRACT

We consider the analogue of Hurwitz curves, smooth projective curves C of genus g≥2 that realize equality in the Hurwitz bound |Aut(C)|≤84(g-1), to smooth compact quotients S of the unit ball in C2. When S is arithmetic, we show that |Aut(S)|≤288e(S), where e(S) is the (topological) Euler characteristic, and in the case of equality show that S is a regular cover of a particular Deligne–Mostow orbifold. We conjecture that this inequality holds independent of arithmeticity, and note that work of Xiao makes progress on this conjecture and implies the best-known lower bound for the volume of a complex hyperbolic 2-orbifold. More... »

PAGES

75-91

Journal

TITLE

Mathematische Zeitschrift

ISSUE

1-2

VOLUME

278

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-014-1306-6

DOI

http://dx.doi.org/10.1007/s00209-014-1306-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044559263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Temple University", 
          "id": "https://www.grid.ac/institutes/grid.264727.2", 
          "name": [
            "Temple University, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stover", 
        "givenName": "Matthew", 
        "id": "sg:person.0737705222.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737705222.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0894-0347-1988-0932662-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000647918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-007-0034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001199856", 
          "https://doi.org/10.1007/s00222-007-0034-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-007-0034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001199856", 
          "https://doi.org/10.1007/s00222-007-0034-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02831623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003170173", 
          "https://doi.org/10.1007/bf02831623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2009.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003389255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/ajm.2014.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004890852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9286-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006920859", 
          "https://doi.org/10.1007/978-1-4757-9286-7_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02831622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012365086", 
          "https://doi.org/10.1007/bf02831622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0084594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016062641", 
          "https://doi.org/10.1007/bfb0084594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-015-0600-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023814469", 
          "https://doi.org/10.1007/s00222-015-0600-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031421448", 
          "https://doi.org/10.1007/bf02698841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsco.1996.0125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036727338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/gcc.2010.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046633091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049788769", 
          "https://doi.org/10.1007/bf01389854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051482557", 
          "https://doi.org/10.1007/s002220050363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-2011-10786-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059333183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-98-09418-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1307/mmj/1401973055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064977512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1980.86.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069067719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1987.130.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069069270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1990.146.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069069677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2946627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070143921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2009.170.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2009.170.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2012.176.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/mrl.1994.v1.n1.a13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072461578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/gtm.1998.1.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096704424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106891632", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106891632"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "We consider the analogue of Hurwitz curves, smooth projective curves C of genus g\u22652 that realize equality in the Hurwitz bound |Aut(C)|\u226484(g-1), to smooth compact quotients S of the unit ball in C2. When S is arithmetic, we show that |Aut(S)|\u2264288e(S), where e(S) is the (topological) Euler characteristic, and in the case of equality show that S is a regular cover of a particular Deligne\u2013Mostow orbifold. We conjecture that this inequality holds independent of arithmeticity, and note that work of Xiao makes progress on this conjecture and implies the best-known lower bound for the volume of a complex hyperbolic 2-orbifold.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-014-1306-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "278"
      }
    ], 
    "name": "Hurwitz ball quotients", 
    "pagination": "75-91", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d4401d4a8aac4421bde15f89b857b32a08c37bc7a51514e419797c8734741d6b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-014-1306-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044559263"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-014-1306-6", 
      "https://app.dimensions.ai/details/publication/pub.1044559263"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000593.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00209-014-1306-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1306-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1306-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1306-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-014-1306-6'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-014-1306-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nec3f93ebee3b4cdd84bfbf17b8d680a4
4 schema:citation sg:pub.10.1007/978-1-4757-9286-7_7
5 sg:pub.10.1007/bf01389854
6 sg:pub.10.1007/bf02698841
7 sg:pub.10.1007/bf02831622
8 sg:pub.10.1007/bf02831623
9 sg:pub.10.1007/bfb0084594
10 sg:pub.10.1007/s00222-007-0034-5
11 sg:pub.10.1007/s00222-015-0600-1
12 sg:pub.10.1007/s002220050363
13 https://app.dimensions.ai/details/publication/pub.1106891632
14 https://doi.org/10.1002/9781118032527
15 https://doi.org/10.1006/jsco.1996.0125
16 https://doi.org/10.1016/j.crma.2009.11.016
17 https://doi.org/10.1090/s0002-9939-2011-10786-x
18 https://doi.org/10.1090/s0894-0347-1988-0932662-7
19 https://doi.org/10.1215/s0012-7094-98-09418-2
20 https://doi.org/10.1307/mmj/1401973055
21 https://doi.org/10.1353/ajm.2014.0007
22 https://doi.org/10.1515/gcc.2010.002
23 https://doi.org/10.2140/gtm.1998.1.511
24 https://doi.org/10.2140/pjm.1980.86.171
25 https://doi.org/10.2140/pjm.1987.130.115
26 https://doi.org/10.2140/pjm.1990.146.331
27 https://doi.org/10.2307/2946627
28 https://doi.org/10.4007/annals.2009.170.123
29 https://doi.org/10.4007/annals.2012.176.1.4
30 https://doi.org/10.4310/mrl.1994.v1.n1.a13
31 schema:datePublished 2014-10
32 schema:datePublishedReg 2014-10-01
33 schema:description We consider the analogue of Hurwitz curves, smooth projective curves C of genus g≥2 that realize equality in the Hurwitz bound |Aut(C)|≤84(g-1), to smooth compact quotients S of the unit ball in C2. When S is arithmetic, we show that |Aut(S)|≤288e(S), where e(S) is the (topological) Euler characteristic, and in the case of equality show that S is a regular cover of a particular Deligne–Mostow orbifold. We conjecture that this inequality holds independent of arithmeticity, and note that work of Xiao makes progress on this conjecture and implies the best-known lower bound for the volume of a complex hyperbolic 2-orbifold.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N009cc914c9c845f29033ec8d2060131c
38 N992d8b3c9f6040c4ae27cc9e85741b35
39 sg:journal.1136443
40 schema:name Hurwitz ball quotients
41 schema:pagination 75-91
42 schema:productId N43cd51e620b64f22909c002aa5713071
43 Nd94e2cedf8354e26ae85a7837823d5c9
44 Ndbc6123f2ac841fbade6fd9e052cc125
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559263
46 https://doi.org/10.1007/s00209-014-1306-6
47 schema:sdDatePublished 2019-04-10T13:30
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N1862ab03bf4141f8adebf75972b9d823
50 schema:url http://link.springer.com/10.1007%2Fs00209-014-1306-6
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N009cc914c9c845f29033ec8d2060131c schema:issueNumber 1-2
55 rdf:type schema:PublicationIssue
56 N1862ab03bf4141f8adebf75972b9d823 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N43cd51e620b64f22909c002aa5713071 schema:name dimensions_id
59 schema:value pub.1044559263
60 rdf:type schema:PropertyValue
61 N992d8b3c9f6040c4ae27cc9e85741b35 schema:volumeNumber 278
62 rdf:type schema:PublicationVolume
63 Nd94e2cedf8354e26ae85a7837823d5c9 schema:name readcube_id
64 schema:value d4401d4a8aac4421bde15f89b857b32a08c37bc7a51514e419797c8734741d6b
65 rdf:type schema:PropertyValue
66 Ndbc6123f2ac841fbade6fd9e052cc125 schema:name doi
67 schema:value 10.1007/s00209-014-1306-6
68 rdf:type schema:PropertyValue
69 Nec3f93ebee3b4cdd84bfbf17b8d680a4 rdf:first sg:person.0737705222.35
70 rdf:rest rdf:nil
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:journal.1136443 schema:issn 0025-5874
78 1432-1823
79 schema:name Mathematische Zeitschrift
80 rdf:type schema:Periodical
81 sg:person.0737705222.35 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
82 schema:familyName Stover
83 schema:givenName Matthew
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737705222.35
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4757-9286-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006920859
87 https://doi.org/10.1007/978-1-4757-9286-7_7
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01389854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049788769
90 https://doi.org/10.1007/bf01389854
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02698841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031421448
93 https://doi.org/10.1007/bf02698841
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02831622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012365086
96 https://doi.org/10.1007/bf02831622
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02831623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003170173
99 https://doi.org/10.1007/bf02831623
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bfb0084594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016062641
102 https://doi.org/10.1007/bfb0084594
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00222-007-0034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001199856
105 https://doi.org/10.1007/s00222-007-0034-5
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00222-015-0600-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023814469
108 https://doi.org/10.1007/s00222-015-0600-1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s002220050363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051482557
111 https://doi.org/10.1007/s002220050363
112 rdf:type schema:CreativeWork
113 https://app.dimensions.ai/details/publication/pub.1106891632 schema:CreativeWork
114 https://doi.org/10.1002/9781118032527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106891632
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1006/jsco.1996.0125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036727338
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.crma.2009.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003389255
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/s0002-9939-2011-10786-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1059333183
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1090/s0894-0347-1988-0932662-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000647918
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1215/s0012-7094-98-09418-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420450
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1307/mmj/1401973055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064977512
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1353/ajm.2014.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004890852
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1515/gcc.2010.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046633091
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2140/gtm.1998.1.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096704424
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2140/pjm.1980.86.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069067719
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2140/pjm.1987.130.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069270
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2140/pjm.1990.146.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069677
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2307/2946627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070143921
141 rdf:type schema:CreativeWork
142 https://doi.org/10.4007/annals.2009.170.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867147
143 rdf:type schema:CreativeWork
144 https://doi.org/10.4007/annals.2012.176.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867433
145 rdf:type schema:CreativeWork
146 https://doi.org/10.4310/mrl.1994.v1.n1.a13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072461578
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
149 schema:name Temple University, Philadelphia, PA, USA
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...