Duality for Koszul homology over Gorenstein rings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02

AUTHORS

Claudia Miller, Hamidreza Rahmati, Janet Striuli

ABSTRACT

We study Koszul homology over local Gorenstein rings. It is well known that if an ideal is strongly Cohen–Macaulay the Koszul homology algebra satisfies Poincaré duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen–Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth. More... »

PAGES

329-343

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-013-1202-5

DOI

http://dx.doi.org/10.1007/s00209-013-1202-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005480061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Syracuse University", 
          "id": "https://www.grid.ac/institutes/grid.264484.8", 
          "name": [
            "Mathematics Department, Syracuse University, 13244, Syracuse, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Claudia", 
        "id": "sg:person.07457150757.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457150757.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Miami University", 
          "id": "https://www.grid.ac/institutes/grid.259956.4", 
          "name": [
            "Mathematics Department, Syracuse University, 13244, Syracuse, NY, USA", 
            "Department of Mathematics, Miami University, 45056, Oxford, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahmati", 
        "givenName": "Hamidreza", 
        "id": "sg:person.011052111757.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052111757.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fairfield University", 
          "id": "https://www.grid.ac/institutes/grid.255794.8", 
          "name": [
            "Department of Mathematics and Computer Science, Fairfield University, 06824, Fairfield, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Striuli", 
        "givenName": "Janet", 
        "id": "sg:person.0747016704.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747016704.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0027763000021553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000738898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1984-0737891-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014898063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0694386-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017142740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927877408548627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021709526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01163026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022459853", 
          "https://doi.org/10.1007/bf01163026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01163026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022459853", 
          "https://doi.org/10.1007/bf01163026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(85)90037-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032567094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8693(74)90025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038943255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040240745", 
          "https://doi.org/10.1007/bf01303330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040240745", 
          "https://doi.org/10.1007/bf01303330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2374083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2374214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900655"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "We study Koszul homology over local Gorenstein rings. It is well known that if an ideal is strongly Cohen\u2013Macaulay the Koszul homology algebra satisfies Poincar\u00e9 duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen\u2013Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-013-1202-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "276"
      }
    ], 
    "name": "Duality for Koszul homology over Gorenstein rings", 
    "pagination": "329-343", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a1cb9d1e17513fd3c5cd01bb57ef2fee9e8bd3f0d08d4831d8005f41c6e0017"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-013-1202-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005480061"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-013-1202-5", 
      "https://app.dimensions.ai/details/publication/pub.1005480061"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00209-013-1202-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1202-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1202-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1202-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1202-5'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-013-1202-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N880758a040d743a0990887c64b60380e
4 schema:citation sg:pub.10.1007/bf01163026
5 sg:pub.10.1007/bf01303330
6 https://doi.org/10.1016/0001-8708(85)90037-4
7 https://doi.org/10.1016/0021-8693(74)90025-8
8 https://doi.org/10.1017/s0027763000021553
9 https://doi.org/10.1080/00927877408548627
10 https://doi.org/10.1090/s0002-9947-1983-0694386-5
11 https://doi.org/10.1090/s0002-9947-1984-0737891-6
12 https://doi.org/10.2307/2374083
13 https://doi.org/10.2307/2374214
14 schema:datePublished 2014-02
15 schema:datePublishedReg 2014-02-01
16 schema:description We study Koszul homology over local Gorenstein rings. It is well known that if an ideal is strongly Cohen–Macaulay the Koszul homology algebra satisfies Poincaré duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen–Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N706bd1561dfc421d84c70203bf7281bc
21 Nb58875bea9d44ca8816dbbea79985897
22 sg:journal.1136443
23 schema:name Duality for Koszul homology over Gorenstein rings
24 schema:pagination 329-343
25 schema:productId N494f7651d706455d9d8491947f03fbec
26 Nb679c999bfc940aeb95572f9a3b4cfde
27 Nc17faafcdf944da6bd9d215c1eedb3a6
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005480061
29 https://doi.org/10.1007/s00209-013-1202-5
30 schema:sdDatePublished 2019-04-10T15:55
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N4cb56b798b3d488e98e04221423b34b4
33 schema:url http://link.springer.com/10.1007%2Fs00209-013-1202-5
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N10b3dc5957ea4a0b9b23e3841add57c2 rdf:first sg:person.0747016704.21
38 rdf:rest rdf:nil
39 N494f7651d706455d9d8491947f03fbec schema:name doi
40 schema:value 10.1007/s00209-013-1202-5
41 rdf:type schema:PropertyValue
42 N4cb56b798b3d488e98e04221423b34b4 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N706bd1561dfc421d84c70203bf7281bc schema:issueNumber 1-2
45 rdf:type schema:PublicationIssue
46 N880758a040d743a0990887c64b60380e rdf:first sg:person.07457150757.62
47 rdf:rest Ndb1fe1f7816940c89188d748e1099c4c
48 Nb58875bea9d44ca8816dbbea79985897 schema:volumeNumber 276
49 rdf:type schema:PublicationVolume
50 Nb679c999bfc940aeb95572f9a3b4cfde schema:name readcube_id
51 schema:value 1a1cb9d1e17513fd3c5cd01bb57ef2fee9e8bd3f0d08d4831d8005f41c6e0017
52 rdf:type schema:PropertyValue
53 Nc17faafcdf944da6bd9d215c1eedb3a6 schema:name dimensions_id
54 schema:value pub.1005480061
55 rdf:type schema:PropertyValue
56 Ndb1fe1f7816940c89188d748e1099c4c rdf:first sg:person.011052111757.75
57 rdf:rest N10b3dc5957ea4a0b9b23e3841add57c2
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136443 schema:issn 0025-5874
65 1432-1823
66 schema:name Mathematische Zeitschrift
67 rdf:type schema:Periodical
68 sg:person.011052111757.75 schema:affiliation https://www.grid.ac/institutes/grid.259956.4
69 schema:familyName Rahmati
70 schema:givenName Hamidreza
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052111757.75
72 rdf:type schema:Person
73 sg:person.07457150757.62 schema:affiliation https://www.grid.ac/institutes/grid.264484.8
74 schema:familyName Miller
75 schema:givenName Claudia
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457150757.62
77 rdf:type schema:Person
78 sg:person.0747016704.21 schema:affiliation https://www.grid.ac/institutes/grid.255794.8
79 schema:familyName Striuli
80 schema:givenName Janet
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747016704.21
82 rdf:type schema:Person
83 sg:pub.10.1007/bf01163026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022459853
84 https://doi.org/10.1007/bf01163026
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01303330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040240745
87 https://doi.org/10.1007/bf01303330
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0001-8708(85)90037-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032567094
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0021-8693(74)90025-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038943255
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0027763000021553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000738898
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1080/00927877408548627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021709526
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/s0002-9947-1983-0694386-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017142740
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/s0002-9947-1984-0737891-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014898063
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2307/2374083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900552
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2307/2374214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900655
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.255794.8 schema:alternateName Fairfield University
106 schema:name Department of Mathematics and Computer Science, Fairfield University, 06824, Fairfield, CT, USA
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.259956.4 schema:alternateName Miami University
109 schema:name Department of Mathematics, Miami University, 45056, Oxford, OH, USA
110 Mathematics Department, Syracuse University, 13244, Syracuse, NY, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.264484.8 schema:alternateName Syracuse University
113 schema:name Mathematics Department, Syracuse University, 13244, Syracuse, NY, USA
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...