Weil representations associated with finite quadratic modules View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10

AUTHORS

Fredrik Strömberg

ABSTRACT

To any finite quadratic module, that is, a finite abelian group together with a non-degenerate quadratic form, it is possible to associate a representation of , the metaplectic cover of the modular group. This representation is usually referred to as a Weil representation and our main result is a general explicit formula for its matrix coefficients. This result completes earlier work by Scheithauer in the case when the representation factors through . Furthermore, our formula is given in a such a way that it is easy to implement efficiently on a computer. More... »

PAGES

509-527

Journal

TITLE

Mathematische Zeitschrift

ISSUE

1-2

VOLUME

275

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-013-1145-x

DOI

http://dx.doi.org/10.1007/s00209-013-1145-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030443634


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, Durham University, Science Laboratories, South Rd., DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Str\u00f6mberg", 
        "givenName": "Fredrik", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01899265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004233186", 
          "https://doi.org/10.1007/bf01899265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-96879-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004268852", 
          "https://doi.org/10.1007/978-3-322-96879-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-96879-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004268852", 
          "https://doi.org/10.1007/978-3-322-96879-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01597371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014146972", 
          "https://doi.org/10.1007/bf01597371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02391012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031201455", 
          "https://doi.org/10.1007/bf02391012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000016706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038551993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0077830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041230379", 
          "https://doi.org/10.1007/bfb0077830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0077830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041230379", 
          "https://doi.org/10.1007/bfb0077830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045229007", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88330-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045229007", 
          "https://doi.org/10.1007/978-3-642-88330-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88330-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045229007", 
          "https://doi.org/10.1007/978-3-642-88330-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10586458.2012.645778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050295324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-2012-02584-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059336734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imrn/rnn166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059690381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-00-10424-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2969/jmsj/01910114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070930399"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "To any finite quadratic module, that is, a finite abelian group together with a non-degenerate quadratic form, it is possible to associate a representation of , the metaplectic cover of the modular group. This representation is usually referred to as a Weil representation and our main result is a general explicit formula for its matrix coefficients. This result completes earlier work by Scheithauer in the case when the representation factors through . Furthermore, our formula is given in a such a way that it is easy to implement efficiently on a computer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-013-1145-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "275"
      }
    ], 
    "name": "Weil representations associated with finite quadratic modules", 
    "pagination": "509-527", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9108074b3356dbad6fd4c1ebe6b1b30f919a379b248b72a50a57ba2c3092bbce"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-013-1145-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030443634"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-013-1145-x", 
      "https://app.dimensions.ai/details/publication/pub.1030443634"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00209-013-1145-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1145-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1145-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1145-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-013-1145-x'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-013-1145-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Naa8c1965ab6e46d58d50e54074524a1d
4 schema:citation sg:pub.10.1007/978-3-322-96879-1
5 sg:pub.10.1007/978-3-642-88330-9
6 sg:pub.10.1007/bf01597371
7 sg:pub.10.1007/bf01899265
8 sg:pub.10.1007/bf02391012
9 sg:pub.10.1007/bfb0077830
10 https://app.dimensions.ai/details/publication/pub.1045229007
11 https://doi.org/10.1017/s0027763000016706
12 https://doi.org/10.1080/10586458.2012.645778
13 https://doi.org/10.1090/s0025-5718-2012-02584-1
14 https://doi.org/10.1093/imrn/rnn166
15 https://doi.org/10.1215/s0012-7094-00-10424-3
16 https://doi.org/10.2307/1969082
17 https://doi.org/10.2307/1970831
18 https://doi.org/10.2969/jmsj/01910114
19 schema:datePublished 2013-10
20 schema:datePublishedReg 2013-10-01
21 schema:description To any finite quadratic module, that is, a finite abelian group together with a non-degenerate quadratic form, it is possible to associate a representation of , the metaplectic cover of the modular group. This representation is usually referred to as a Weil representation and our main result is a general explicit formula for its matrix coefficients. This result completes earlier work by Scheithauer in the case when the representation factors through . Furthermore, our formula is given in a such a way that it is easy to implement efficiently on a computer.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N5fb9031b442747c08dc60efd6249ad9f
26 Ne91d8c388dfa45d1afb6fe4d819858a5
27 sg:journal.1136443
28 schema:name Weil representations associated with finite quadratic modules
29 schema:pagination 509-527
30 schema:productId N2c4a012a82224be69063927b22802996
31 N7ac3ff244b9043e29e742106ca7a1c73
32 Nce92b6016fee412489138eea33302206
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443634
34 https://doi.org/10.1007/s00209-013-1145-x
35 schema:sdDatePublished 2019-04-10T15:05
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Na8f915273e5b45bf89200fec9cda8685
38 schema:url http://link.springer.com/10.1007%2Fs00209-013-1145-x
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N2c4a012a82224be69063927b22802996 schema:name readcube_id
43 schema:value 9108074b3356dbad6fd4c1ebe6b1b30f919a379b248b72a50a57ba2c3092bbce
44 rdf:type schema:PropertyValue
45 N5fb9031b442747c08dc60efd6249ad9f schema:volumeNumber 275
46 rdf:type schema:PublicationVolume
47 N7ac3ff244b9043e29e742106ca7a1c73 schema:name doi
48 schema:value 10.1007/s00209-013-1145-x
49 rdf:type schema:PropertyValue
50 N9a392fe204224238b32cf1d8afdbaca4 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
51 schema:familyName Strömberg
52 schema:givenName Fredrik
53 rdf:type schema:Person
54 Na8f915273e5b45bf89200fec9cda8685 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Naa8c1965ab6e46d58d50e54074524a1d rdf:first N9a392fe204224238b32cf1d8afdbaca4
57 rdf:rest rdf:nil
58 Nce92b6016fee412489138eea33302206 schema:name dimensions_id
59 schema:value pub.1030443634
60 rdf:type schema:PropertyValue
61 Ne91d8c388dfa45d1afb6fe4d819858a5 schema:issueNumber 1-2
62 rdf:type schema:PublicationIssue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136443 schema:issn 0025-5874
70 1432-1823
71 schema:name Mathematische Zeitschrift
72 rdf:type schema:Periodical
73 sg:pub.10.1007/978-3-322-96879-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004268852
74 https://doi.org/10.1007/978-3-322-96879-1
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/978-3-642-88330-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045229007
77 https://doi.org/10.1007/978-3-642-88330-9
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01597371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014146972
80 https://doi.org/10.1007/bf01597371
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01899265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004233186
83 https://doi.org/10.1007/bf01899265
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02391012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031201455
86 https://doi.org/10.1007/bf02391012
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bfb0077830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041230379
89 https://doi.org/10.1007/bfb0077830
90 rdf:type schema:CreativeWork
91 https://app.dimensions.ai/details/publication/pub.1045229007 schema:CreativeWork
92 https://doi.org/10.1017/s0027763000016706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038551993
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1080/10586458.2012.645778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050295324
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1090/s0025-5718-2012-02584-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059336734
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1093/imrn/rnn166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059690381
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1215/s0012-7094-00-10424-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415130
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1969082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674480
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/1970831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676142
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2969/jmsj/01910114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070930399
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
109 schema:name Department of Mathematical Sciences, Durham University, Science Laboratories, South Rd., DH1 3LE, Durham, UK
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...