Hom-polytopes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-04

AUTHORS

Tristram Bogart, Mark Contois, Joseph Gubeladze

ABSTRACT

We study the polytopes of affine maps between two polytopes—the hom-polytopes. The hom-polytope functor has a left adjoint—tensor product polytopes. The analogy with the category of vector spaces is limited, as we illustrate by a series of explicit examples exhibiting various extremal properties. The main challenge for hom-polytopes is to determine their vertices. A polytopal analogue of the rank-nullity theorem amounts to understanding how the vertex maps behave relative to their surjective and injective factors. This leads to interesting classes of surjective maps. In the last two sections we focus on two opposite extremal cases—when the source and target polytopes are both polygons and are either generic or regular. More... »

PAGES

1267-1296

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00209-012-1053-5

DOI

http://dx.doi.org/10.1007/s00209-012-1053-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026030079


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidad de Los Andes", 
          "id": "https://www.grid.ac/institutes/grid.7247.6", 
          "name": [
            "Departamento de Matem\u00e1ticas, Universidad de los Andes, Cra 1 No. 18A-10, Edificio H, 111711, Bogot\u00e1, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogart", 
        "givenName": "Tristram", 
        "id": "sg:person.011504445413.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Blackberry (Canada)", 
          "id": "https://www.grid.ac/institutes/grid.39591.37", 
          "name": [
            "Research in Motion, 295 Phillip Street, N2L 3W8, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Contois", 
        "givenName": "Mark", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "San Francisco State University", 
          "id": "https://www.grid.ac/institutes/grid.263091.f", 
          "name": [
            "Department of Mathematics, San Francisco State University, 1600 Holloway Ave., 94132, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gubeladze", 
        "givenName": "Joseph", 
        "id": "sg:person.010575065223.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575065223.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-8431-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034126804", 
          "https://doi.org/10.1007/978-1-4613-8431-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8431-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034126804", 
          "https://doi.org/10.1007/978-1-4613-8431-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1995-00604-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039437269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8438-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052208426", 
          "https://doi.org/10.1007/978-3-0348-8438-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8438-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052208426", 
          "https://doi.org/10.1007/978-3-0348-8438-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2946575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070143884"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "We study the polytopes of affine maps between two polytopes\u2014the hom-polytopes. The hom-polytope functor has a left adjoint\u2014tensor product polytopes. The analogy with the category of vector spaces is limited, as we illustrate by a series of explicit examples exhibiting various extremal properties. The main challenge for hom-polytopes is to determine their vertices. A polytopal analogue of the rank-nullity theorem amounts to understanding how the vertex maps behave relative to their surjective and injective factors. This leads to interesting classes of surjective maps. In the last two sections we focus on two opposite extremal cases\u2014when the source and target polytopes are both polygons and are either generic or regular.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00209-012-1053-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "273"
      }
    ], 
    "name": "Hom-polytopes", 
    "pagination": "1267-1296", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c013ca723b0d4b73c08ce797339311fc0e26e747e987c499c1fd58535a5a2e5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00209-012-1053-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026030079"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00209-012-1053-5", 
      "https://app.dimensions.ai/details/publication/pub.1026030079"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00209-012-1053-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-012-1053-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-012-1053-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-012-1053-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-012-1053-5'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00209-012-1053-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N17c3350192c44e96a42a09ee755de8e9
4 schema:citation sg:pub.10.1007/978-1-4613-8431-1
5 sg:pub.10.1007/978-3-0348-8438-9_2
6 https://doi.org/10.1090/s0273-0979-1995-00604-x
7 https://doi.org/10.2307/2946575
8 schema:datePublished 2013-04
9 schema:datePublishedReg 2013-04-01
10 schema:description We study the polytopes of affine maps between two polytopes—the hom-polytopes. The hom-polytope functor has a left adjoint—tensor product polytopes. The analogy with the category of vector spaces is limited, as we illustrate by a series of explicit examples exhibiting various extremal properties. The main challenge for hom-polytopes is to determine their vertices. A polytopal analogue of the rank-nullity theorem amounts to understanding how the vertex maps behave relative to their surjective and injective factors. This leads to interesting classes of surjective maps. In the last two sections we focus on two opposite extremal cases—when the source and target polytopes are both polygons and are either generic or regular.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N487406dbef1e48088c3cc1299b4da2f8
15 N5d04b113f673475fbd28dd5a3a9c5768
16 sg:journal.1136443
17 schema:name Hom-polytopes
18 schema:pagination 1267-1296
19 schema:productId N42ddc09258a74ed5924c1d2b36198596
20 N455efd2916bb4e1685efaed237772de3
21 N95b7d564a25d44aa9751e581fc2b5d5d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026030079
23 https://doi.org/10.1007/s00209-012-1053-5
24 schema:sdDatePublished 2019-04-10T23:28
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nc82c5d9c85ce420d877d8f64eb7f1811
27 schema:url http://link.springer.com/10.1007%2Fs00209-012-1053-5
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N17c3350192c44e96a42a09ee755de8e9 rdf:first sg:person.011504445413.92
32 rdf:rest N3ede68ae9f2244fc9d5857112caf2867
33 N31d0a8fe0f244dafb0b3c5c6b93be7fc rdf:first sg:person.010575065223.48
34 rdf:rest rdf:nil
35 N3ede68ae9f2244fc9d5857112caf2867 rdf:first N5afae176408444ba9c6b6a0178fc2b32
36 rdf:rest N31d0a8fe0f244dafb0b3c5c6b93be7fc
37 N42ddc09258a74ed5924c1d2b36198596 schema:name doi
38 schema:value 10.1007/s00209-012-1053-5
39 rdf:type schema:PropertyValue
40 N455efd2916bb4e1685efaed237772de3 schema:name readcube_id
41 schema:value 7c013ca723b0d4b73c08ce797339311fc0e26e747e987c499c1fd58535a5a2e5
42 rdf:type schema:PropertyValue
43 N487406dbef1e48088c3cc1299b4da2f8 schema:volumeNumber 273
44 rdf:type schema:PublicationVolume
45 N5afae176408444ba9c6b6a0178fc2b32 schema:affiliation https://www.grid.ac/institutes/grid.39591.37
46 schema:familyName Contois
47 schema:givenName Mark
48 rdf:type schema:Person
49 N5d04b113f673475fbd28dd5a3a9c5768 schema:issueNumber 3-4
50 rdf:type schema:PublicationIssue
51 N95b7d564a25d44aa9751e581fc2b5d5d schema:name dimensions_id
52 schema:value pub.1026030079
53 rdf:type schema:PropertyValue
54 Nc82c5d9c85ce420d877d8f64eb7f1811 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136443 schema:issn 0025-5874
63 1432-1823
64 schema:name Mathematische Zeitschrift
65 rdf:type schema:Periodical
66 sg:person.010575065223.48 schema:affiliation https://www.grid.ac/institutes/grid.263091.f
67 schema:familyName Gubeladze
68 schema:givenName Joseph
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575065223.48
70 rdf:type schema:Person
71 sg:person.011504445413.92 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
72 schema:familyName Bogart
73 schema:givenName Tristram
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92
75 rdf:type schema:Person
76 sg:pub.10.1007/978-1-4613-8431-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034126804
77 https://doi.org/10.1007/978-1-4613-8431-1
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/978-3-0348-8438-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052208426
80 https://doi.org/10.1007/978-3-0348-8438-9_2
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1090/s0273-0979-1995-00604-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039437269
83 rdf:type schema:CreativeWork
84 https://doi.org/10.2307/2946575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070143884
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.263091.f schema:alternateName San Francisco State University
87 schema:name Department of Mathematics, San Francisco State University, 1600 Holloway Ave., 94132, San Francisco, CA, USA
88 rdf:type schema:Organization
89 https://www.grid.ac/institutes/grid.39591.37 schema:alternateName Blackberry (Canada)
90 schema:name Research in Motion, 295 Phillip Street, N2L 3W8, Waterloo, ON, Canada
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.7247.6 schema:alternateName Universidad de Los Andes
93 schema:name Departamento de Matemáticas, Universidad de los Andes, Cra 1 No. 18A-10, Edificio H, 111711, Bogotá, Colombia
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...