On the Cauchy problem for the two-component Camassa–Holm system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06

AUTHORS

Guilong Gui, Yue Liu

ABSTRACT

In this paper we establish the local well-posedness for the two-component Camassa–Holm system in a range of the Besov spaces. We also derive a wave-breaking mechanism for strong solutions. In addition, we determine the exact blow-up rate of such solutions to the system.

PAGES

45-66

References to SciGraph publications

  • 1975. Quasi-linear equations of evolution, with applications to partial differential equations in SPECTRAL THEORY AND DIFFERENTIAL EQUATIONS
  • 2004. On the Prolongation of a Hierarchy of Hydrodynamic Chains in NEW TRENDS IN INTEGRABILITY AND PARTIAL SOLVABILITY
  • 1983. Theory of Function Spaces in NONE
  • 2009-04. The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2006-12. The trajectories of particles in Stokes waves in INVENTIONES MATHEMATICAE
  • 2003-10. Geodesic flow on the diffeomorphism group of the circle in COMMENTARII MATHEMATICI HELVETICI
  • 2006-01. A Two-component Generalization of the Camassa-Holm Equation and its Solutions in LETTERS IN MATHEMATICAL PHYSICS
  • 1998-09. Wave breaking for nonlinear nonlocal shallow water equations in ACTA MATHEMATICA
  • 2007-02. Global Conservative Solutions of the Camassa–Holm Equation in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00209-009-0660-2

    DOI

    http://dx.doi.org/10.1007/s00209-009-0660-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041307127


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Academy of Mathematics and Systems Science", 
              "id": "https://www.grid.ac/institutes/grid.458463.8", 
              "name": [
                "Department of Mathematics, Jiangsu University, 212013, Zhenjiang, Jiangsu, China", 
                "Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gui", 
            "givenName": "Guilong", 
            "id": "sg:person.07706327573.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706327573.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The University of Texas at Arlington", 
              "id": "https://www.grid.ac/institutes/grid.267315.4", 
              "name": [
                "Department of Mathematics, University of Texas, 76019, Arlington, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yue", 
            "id": "sg:person.016541015145.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541015145.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11005-005-0041-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001698236", 
              "https://doi.org/10.1007/s11005-005-0041-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-005-0041-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001698236", 
              "https://doi.org/10.1007/s11005-005-0041-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2006.01.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002884627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2008.10.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007801848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-006-0002-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009777037", 
              "https://doi.org/10.1007/s00222-006-0002-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-006-0002-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009777037", 
              "https://doi.org/10.1007/s00222-006-0002-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0346-0416-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012012456", 
              "https://doi.org/10.1007/978-3-0346-0416-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0346-0416-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012012456", 
              "https://doi.org/10.1007/978-3-0346-0416-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014571114", 
              "https://doi.org/10.1007/bf02392586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.2008.0263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016565456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0312(199908)52:8<949::aid-cpa3>3.0.co;2-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018982770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0273-0979-07-01159-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022128662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00014-003-0785-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023379645", 
              "https://doi.org/10.1007/s00014-003-0785-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/39/2/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025020529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/39/2/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025020529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(81)90004-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030122039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(81)90004-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030122039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-1023-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031302646", 
              "https://doi.org/10.1007/978-94-007-1023-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-1023-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031302646", 
              "https://doi.org/10.1007/978-94-007-1023-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-008-0128-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034110738", 
              "https://doi.org/10.1007/s00205-008-0128-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-008-0128-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034110738", 
              "https://doi.org/10.1007/s00205-008-0128-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-008-0128-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034110738", 
              "https://doi.org/10.1007/s00205-008-0128-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-006-0010-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038794731", 
              "https://doi.org/10.1007/s00205-006-0010-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-006-0010-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038794731", 
              "https://doi.org/10.1007/s00205-006-0010-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047267792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047267792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0067080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048580040", 
              "https://doi.org/10.1007/bfb0067080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219530507000857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062998897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3934/dcds.2007.19.493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071733545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3934/dcds.2007.19.555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071733549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.1757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073137472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/asens.1404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084407977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12775/tmna.1996.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084788266"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-06", 
        "datePublishedReg": "2011-06-01", 
        "description": "In this paper we establish the local well-posedness for the two-component Camassa\u2013Holm system in a range of the Besov spaces. We also derive a wave-breaking mechanism for strong solutions. In addition, we determine the exact blow-up rate of such solutions to the system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00209-009-0660-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136443", 
            "issn": [
              "0025-5874", 
              "1432-1823"
            ], 
            "name": "Mathematische Zeitschrift", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "268"
          }
        ], 
        "name": "On the Cauchy problem for the two-component Camassa\u2013Holm system", 
        "pagination": "45-66", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c4c65a2b2ea2751324d1dd8265cce63248180db92472eb3cee4dae7fb0e10185"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00209-009-0660-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041307127"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00209-009-0660-2", 
          "https://app.dimensions.ai/details/publication/pub.1041307127"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000534.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00209-009-0660-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0660-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0660-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0660-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0660-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      20 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00209-009-0660-2 schema:author N12010ed513564c13afddecd5c5532a58
    2 schema:citation sg:pub.10.1007/978-3-0346-0416-1
    3 sg:pub.10.1007/978-94-007-1023-8_10
    4 sg:pub.10.1007/bf02392586
    5 sg:pub.10.1007/bfb0067080
    6 sg:pub.10.1007/s00014-003-0785-6
    7 sg:pub.10.1007/s00205-006-0010-z
    8 sg:pub.10.1007/s00205-008-0128-2
    9 sg:pub.10.1007/s00222-006-0002-5
    10 sg:pub.10.1007/s11005-005-0041-7
    11 https://doi.org/10.1002/(sici)1097-0312(199908)52:8<949::aid-cpa3>3.0.co;2-d
    12 https://doi.org/10.1016/0167-2789(81)90004-x
    13 https://doi.org/10.1016/j.physleta.2006.01.027
    14 https://doi.org/10.1016/j.physleta.2008.10.050
    15 https://doi.org/10.1088/0305-4470/39/2/004
    16 https://doi.org/10.1090/s0273-0979-07-01159-7
    17 https://doi.org/10.1098/rspa.2008.0263
    18 https://doi.org/10.1103/physrevlett.71.1661
    19 https://doi.org/10.1142/s0219530507000857
    20 https://doi.org/10.12775/tmna.1996.001
    21 https://doi.org/10.24033/asens.1404
    22 https://doi.org/10.3934/dcds.2007.19.493
    23 https://doi.org/10.3934/dcds.2007.19.555
    24 https://doi.org/10.5802/aif.1757
    25 schema:datePublished 2011-06
    26 schema:datePublishedReg 2011-06-01
    27 schema:description In this paper we establish the local well-posedness for the two-component Camassa–Holm system in a range of the Besov spaces. We also derive a wave-breaking mechanism for strong solutions. In addition, we determine the exact blow-up rate of such solutions to the system.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N9c7da4bb0a394c659720022a0663ff83
    32 Nd9c98cca5cf94810a4d8d77eed788ebd
    33 sg:journal.1136443
    34 schema:name On the Cauchy problem for the two-component Camassa–Holm system
    35 schema:pagination 45-66
    36 schema:productId N1d98861e3e214af5bf3ef215f89db5d1
    37 N58c71c2367c348f28d90fa6538f2f17d
    38 Nb6fe04899fa94f4086e3a70c9d2ab29a
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041307127
    40 https://doi.org/10.1007/s00209-009-0660-2
    41 schema:sdDatePublished 2019-04-10T20:01
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher Na6698ff65fdd4e6d9ce3f9d0e38753cc
    44 schema:url http://link.springer.com/10.1007%2Fs00209-009-0660-2
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N12010ed513564c13afddecd5c5532a58 rdf:first sg:person.07706327573.10
    49 rdf:rest Naf587b5d0c274b31b70d1563b7c4e2f9
    50 N1d98861e3e214af5bf3ef215f89db5d1 schema:name dimensions_id
    51 schema:value pub.1041307127
    52 rdf:type schema:PropertyValue
    53 N58c71c2367c348f28d90fa6538f2f17d schema:name doi
    54 schema:value 10.1007/s00209-009-0660-2
    55 rdf:type schema:PropertyValue
    56 N9c7da4bb0a394c659720022a0663ff83 schema:issueNumber 1-2
    57 rdf:type schema:PublicationIssue
    58 Na6698ff65fdd4e6d9ce3f9d0e38753cc schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Naf587b5d0c274b31b70d1563b7c4e2f9 rdf:first sg:person.016541015145.05
    61 rdf:rest rdf:nil
    62 Nb6fe04899fa94f4086e3a70c9d2ab29a schema:name readcube_id
    63 schema:value c4c65a2b2ea2751324d1dd8265cce63248180db92472eb3cee4dae7fb0e10185
    64 rdf:type schema:PropertyValue
    65 Nd9c98cca5cf94810a4d8d77eed788ebd schema:volumeNumber 268
    66 rdf:type schema:PublicationVolume
    67 sg:journal.1136443 schema:issn 0025-5874
    68 1432-1823
    69 schema:name Mathematische Zeitschrift
    70 rdf:type schema:Periodical
    71 sg:person.016541015145.05 schema:affiliation https://www.grid.ac/institutes/grid.267315.4
    72 schema:familyName Liu
    73 schema:givenName Yue
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541015145.05
    75 rdf:type schema:Person
    76 sg:person.07706327573.10 schema:affiliation https://www.grid.ac/institutes/grid.458463.8
    77 schema:familyName Gui
    78 schema:givenName Guilong
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706327573.10
    80 rdf:type schema:Person
    81 sg:pub.10.1007/978-3-0346-0416-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012012456
    82 https://doi.org/10.1007/978-3-0346-0416-1
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/978-94-007-1023-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031302646
    85 https://doi.org/10.1007/978-94-007-1023-8_10
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf02392586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014571114
    88 https://doi.org/10.1007/bf02392586
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bfb0067080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048580040
    91 https://doi.org/10.1007/bfb0067080
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/s00014-003-0785-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023379645
    94 https://doi.org/10.1007/s00014-003-0785-6
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s00205-006-0010-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038794731
    97 https://doi.org/10.1007/s00205-006-0010-z
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s00205-008-0128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034110738
    100 https://doi.org/10.1007/s00205-008-0128-2
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00222-006-0002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009777037
    103 https://doi.org/10.1007/s00222-006-0002-5
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s11005-005-0041-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001698236
    106 https://doi.org/10.1007/s11005-005-0041-7
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1002/(sici)1097-0312(199908)52:8<949::aid-cpa3>3.0.co;2-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1018982770
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/0167-2789(81)90004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030122039
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.physleta.2006.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002884627
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.physleta.2008.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007801848
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1088/0305-4470/39/2/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025020529
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1090/s0273-0979-07-01159-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022128662
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1098/rspa.2008.0263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016565456
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrevlett.71.1661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047267792
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1142/s0219530507000857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062998897
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.12775/tmna.1996.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084788266
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.24033/asens.1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084407977
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.3934/dcds.2007.19.493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071733545
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.3934/dcds.2007.19.555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071733549
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.5802/aif.1757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137472
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.267315.4 schema:alternateName The University of Texas at Arlington
    137 schema:name Department of Mathematics, University of Texas, 76019, Arlington, TX, USA
    138 rdf:type schema:Organization
    139 https://www.grid.ac/institutes/grid.458463.8 schema:alternateName Academy of Mathematics and Systems Science
    140 schema:name Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
    141 Department of Mathematics, Jiangsu University, 212013, Zhenjiang, Jiangsu, China
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...