Pluriharmonic maps into Kähler symmetric spaces and Sym’s formula View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-02

AUTHORS

J.-H. Eschenburg, P. Quast

ABSTRACT

N/A

PAGES

483

References to SciGraph publications

  • 2010-02. Pluriharmonic maps into Kähler symmetric spaces and Sym’s formula in MATHEMATISCHE ZEITSCHRIFT
  • 1985. Soliton surfaces and their applications (soliton geometry from spectral problems) in GEOMETRIC ASPECTS OF THE EINSTEIN EQUATIONS AND INTEGRABLE SYSTEMS
  • 1989-03. The weak solutions to the evolution problems of harmonic maps in MATHEMATISCHE ZEITSCHRIFT
  • Journal

    TITLE

    Mathematische Zeitschrift

    ISSUE

    2

    VOLUME

    264

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00209-009-0583-y

    DOI

    http://dx.doi.org/10.1007/s00209-009-0583-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005839726


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institut f\u00fcr Mathematik, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eschenburg", 
            "givenName": "J.-H.", 
            "id": "sg:person.010005440075.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005440075.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institut f\u00fcr Mathematik, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quast", 
            "givenName": "P.", 
            "id": "sg:person.0634445707.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01161995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008390260", 
              "https://doi.org/10.1007/bf01161995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01161995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008390260", 
              "https://doi.org/10.1007/bf01161995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-16039-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025981100", 
              "https://doi.org/10.1007/3-540-16039-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-008-0472-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035861037", 
              "https://doi.org/10.1007/s00209-008-0472-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-008-0472-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035861037", 
              "https://doi.org/10.1007/s00209-008-0472-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160410405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053472700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160410405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053472700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1991v046n04abeh002826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058196209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0149104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062840767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511543036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098787016"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-02", 
        "datePublishedReg": "2010-02-01", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/s00209-009-0583-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136443", 
            "issn": [
              "0025-5874", 
              "1432-1823"
            ], 
            "name": "Mathematische Zeitschrift", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "264"
          }
        ], 
        "name": "Pluriharmonic maps into K\u00e4hler symmetric spaces and Sym\u2019s formula", 
        "pagination": "483", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1bd2292e8f10a95f3c489e7b1fdee80735b377030566b178739e279bb004a0e2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00209-009-0583-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005839726"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00209-009-0583-y", 
          "https://app.dimensions.ai/details/publication/pub.1005839726"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13078_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00209-009-0583-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0583-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0583-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0583-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-009-0583-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      19 PREDICATES      31 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00209-009-0583-y schema:author Na8cbd07f4f10484989c9a34df5a0e331
    2 schema:citation sg:pub.10.1007/3-540-16039-6_6
    3 sg:pub.10.1007/bf01161995
    4 sg:pub.10.1007/s00209-008-0472-9
    5 https://doi.org/10.1002/cpa.3160410405
    6 https://doi.org/10.1017/cbo9780511543036
    7 https://doi.org/10.1070/rm1991v046n04abeh002826
    8 https://doi.org/10.1137/0149104
    9 schema:datePublished 2010-02
    10 schema:datePublishedReg 2010-02-01
    11 schema:genre non_research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N1ddb5dd551cd45b5b682ea45e4a981ab
    15 Ne9d4cbc460eb41e5adeff45c4e0fed6b
    16 sg:journal.1136443
    17 schema:name Pluriharmonic maps into Kähler symmetric spaces and Sym’s formula
    18 schema:pagination 483
    19 schema:productId N07045b8ce3c541c7974a67dee6677bba
    20 N3d963a39a0384826b5881a1c59fa01d6
    21 Neeabfce4fead43dca5f6fe2ea6dacc31
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005839726
    23 https://doi.org/10.1007/s00209-009-0583-y
    24 schema:sdDatePublished 2019-04-11T14:27
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N8cb403e44a9a4b2ab950d739feceafc3
    27 schema:url http://link.springer.com/10.1007%2Fs00209-009-0583-y
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N07045b8ce3c541c7974a67dee6677bba schema:name readcube_id
    32 schema:value 1bd2292e8f10a95f3c489e7b1fdee80735b377030566b178739e279bb004a0e2
    33 rdf:type schema:PropertyValue
    34 N1ddb5dd551cd45b5b682ea45e4a981ab schema:issueNumber 2
    35 rdf:type schema:PublicationIssue
    36 N3d963a39a0384826b5881a1c59fa01d6 schema:name dimensions_id
    37 schema:value pub.1005839726
    38 rdf:type schema:PropertyValue
    39 N806dda822c1b4f7b935bb2bf168df630 rdf:first sg:person.0634445707.95
    40 rdf:rest rdf:nil
    41 N8cb403e44a9a4b2ab950d739feceafc3 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 Na8cbd07f4f10484989c9a34df5a0e331 rdf:first sg:person.010005440075.15
    44 rdf:rest N806dda822c1b4f7b935bb2bf168df630
    45 Ne9d4cbc460eb41e5adeff45c4e0fed6b schema:volumeNumber 264
    46 rdf:type schema:PublicationVolume
    47 Neeabfce4fead43dca5f6fe2ea6dacc31 schema:name doi
    48 schema:value 10.1007/s00209-009-0583-y
    49 rdf:type schema:PropertyValue
    50 sg:journal.1136443 schema:issn 0025-5874
    51 1432-1823
    52 schema:name Mathematische Zeitschrift
    53 rdf:type schema:Periodical
    54 sg:person.010005440075.15 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    55 schema:familyName Eschenburg
    56 schema:givenName J.-H.
    57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005440075.15
    58 rdf:type schema:Person
    59 sg:person.0634445707.95 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    60 schema:familyName Quast
    61 schema:givenName P.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95
    63 rdf:type schema:Person
    64 sg:pub.10.1007/3-540-16039-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025981100
    65 https://doi.org/10.1007/3-540-16039-6_6
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/bf01161995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008390260
    68 https://doi.org/10.1007/bf01161995
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/s00209-008-0472-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035861037
    71 https://doi.org/10.1007/s00209-008-0472-9
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1002/cpa.3160410405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053472700
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1017/cbo9780511543036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787016
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1070/rm1991v046n04abeh002826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196209
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1137/0149104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840767
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
    82 schema:name Institut für Mathematik, Universität Augsburg, 86135, Augsburg, Germany
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...