Pluriharmonic maps into Kähler symmetric spaces and Sym’s formula View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

J.-H. Eschenburg, P. Quast

ABSTRACT

A construction due to Sym and Bobenko recovers constant mean curvature surfaces in euclidean 3-space from their harmonic Gauss maps. We generalize this construction to higher dimensions and codimensions replacing the surface by a complex manifold and the sphere (the target space of the Gauss map) by a Kähler symmetric space of compact type with its standard embedding into the Lie algebra of its transvection group. Thus we obtain a new class of immersed Kähler submanifolds of and we derive their properties. More... »

PAGES

469

References to SciGraph publications

  • 2003-11. Pluriharmonic Maps, Loop Groups and Twistor Theory in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • 1984. Noether’s Theorem for Harmonic Maps in DIFFERENTIAL GEOMETRIC METHODS IN MATHEMATICAL PHYSICS
  • 1980-02. Symmetric submanifolds of euclidean space in MATHEMATISCHE ANNALEN
  • 1985. Soliton surfaces and their applications (soliton geometry from spectral problems) in GEOMETRIC ASPECTS OF THE EINSTEIN EQUATIONS AND INTEGRABLE SYSTEMS
  • 1998-12. Associated families of pluriharmonic maps and isotropy in MANUSCRIPTA MATHEMATICA
  • 2007-06. Pluriharmonic maps of maximal rank in MATHEMATISCHE ZEITSCHRIFT
  • Journal

    TITLE

    Mathematische Zeitschrift

    ISSUE

    2

    VOLUME

    264

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00209-008-0472-9

    DOI

    http://dx.doi.org/10.1007/s00209-008-0472-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035861037


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institut f\u00fcr Mathematik, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eschenburg", 
            "givenName": "J.-H.", 
            "id": "sg:person.010005440075.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005440075.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institut f\u00fcr Mathematik, Universit\u00e4t Augsburg, 86135, Augsburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quast", 
            "givenName": "P.", 
            "id": "sg:person.0634445707.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00209-006-0071-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000687857", 
              "https://doi.org/10.1007/s00209-006-0071-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-006-0071-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000687857", 
              "https://doi.org/10.1007/s00209-006-0071-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-61.3.546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001046496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02678032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009803970", 
              "https://doi.org/10.1007/bf02678032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02678032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009803970", 
              "https://doi.org/10.1007/bf02678032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026225029745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015730946", 
              "https://doi.org/10.1023/a:1026225029745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.difgeo.2008.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025656253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-16039-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025981100", 
              "https://doi.org/10.1007/3-540-16039-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0926-2245(03)00055-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035169244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/39/29/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035842919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1970-0259768-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037437997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.difgeo.2005.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041599002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-57.3.577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045319298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.difgeo.2007.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046686448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049836584", 
              "https://doi.org/10.1007/bf01359868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049836584", 
              "https://doi.org/10.1007/bf01359868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1991v046n04abeh002826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058196209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214443286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/079-1/15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1087827143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-6874-6_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089656400", 
              "https://doi.org/10.1007/978-94-015-6874-6_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511543036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098787016"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-02", 
        "datePublishedReg": "2010-02-01", 
        "description": "A construction due to Sym and Bobenko recovers constant mean curvature surfaces in euclidean 3-space from their harmonic Gauss maps. We generalize this construction to higher dimensions and codimensions replacing the surface by a complex manifold and the sphere (the target space of the Gauss map) by a K\u00e4hler symmetric space of compact type with its standard embedding into the Lie algebra of its transvection group. Thus we obtain a new class of immersed K\u00e4hler submanifolds of and we derive their properties.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00209-008-0472-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136443", 
            "issn": [
              "0025-5874", 
              "1432-1823"
            ], 
            "name": "Mathematische Zeitschrift", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "264"
          }
        ], 
        "name": "Pluriharmonic maps into K\u00e4hler symmetric spaces and Sym\u2019s formula", 
        "pagination": "469", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aad4a8454a7b3c8e9c2f5a023fc2ae2018105d873218c46b0d43113665c07488"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00209-008-0472-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035861037"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00209-008-0472-9", 
          "https://app.dimensions.ai/details/publication/pub.1035861037"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13068_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00209-008-0472-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-008-0472-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-008-0472-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-008-0472-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-008-0472-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00209-008-0472-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N03e94827b8cc4199b7812020e14c9e7b
    4 schema:citation sg:pub.10.1007/3-540-16039-6_6
    5 sg:pub.10.1007/978-94-015-6874-6_13
    6 sg:pub.10.1007/bf01359868
    7 sg:pub.10.1007/bf02678032
    8 sg:pub.10.1007/s00209-006-0071-6
    9 sg:pub.10.1023/a:1026225029745
    10 https://doi.org/10.1016/j.difgeo.2005.07.001
    11 https://doi.org/10.1016/j.difgeo.2007.02.005
    12 https://doi.org/10.1016/j.difgeo.2008.06.001
    13 https://doi.org/10.1016/s0926-2245(03)00055-x
    14 https://doi.org/10.1017/cbo9780511543036
    15 https://doi.org/10.1070/rm1991v046n04abeh002826
    16 https://doi.org/10.1088/0305-4470/39/29/013
    17 https://doi.org/10.1090/s0002-9947-1970-0259768-5
    18 https://doi.org/10.1112/plms/s3-57.3.577
    19 https://doi.org/10.1112/plms/s3-61.3.546
    20 https://doi.org/10.4171/079-1/15
    21 https://doi.org/10.4310/jdg/1214443286
    22 schema:datePublished 2010-02
    23 schema:datePublishedReg 2010-02-01
    24 schema:description A construction due to Sym and Bobenko recovers constant mean curvature surfaces in euclidean 3-space from their harmonic Gauss maps. We generalize this construction to higher dimensions and codimensions replacing the surface by a complex manifold and the sphere (the target space of the Gauss map) by a Kähler symmetric space of compact type with its standard embedding into the Lie algebra of its transvection group. Thus we obtain a new class of immersed Kähler submanifolds of and we derive their properties.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N0e4743d686db44689e4edefffed4d42a
    29 Nbdec67f9a944461f973e91050eae7a70
    30 sg:journal.1136443
    31 schema:name Pluriharmonic maps into Kähler symmetric spaces and Sym’s formula
    32 schema:pagination 469
    33 schema:productId N82f3f8151c564ae6b3eefd2948752f72
    34 Nc2439dc18c734884b5ab603065045782
    35 Nd67c0c4736f84d588ed926b0a8ccd04a
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035861037
    37 https://doi.org/10.1007/s00209-008-0472-9
    38 schema:sdDatePublished 2019-04-11T14:25
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nb8914e40137e421fa4843932930d9bb8
    41 schema:url http://link.springer.com/10.1007%2Fs00209-008-0472-9
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N03e94827b8cc4199b7812020e14c9e7b rdf:first sg:person.010005440075.15
    46 rdf:rest N5f791da12a3d460fbd872a0a3cf1d862
    47 N0e4743d686db44689e4edefffed4d42a schema:volumeNumber 264
    48 rdf:type schema:PublicationVolume
    49 N5f791da12a3d460fbd872a0a3cf1d862 rdf:first sg:person.0634445707.95
    50 rdf:rest rdf:nil
    51 N82f3f8151c564ae6b3eefd2948752f72 schema:name readcube_id
    52 schema:value aad4a8454a7b3c8e9c2f5a023fc2ae2018105d873218c46b0d43113665c07488
    53 rdf:type schema:PropertyValue
    54 Nb8914e40137e421fa4843932930d9bb8 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Nbdec67f9a944461f973e91050eae7a70 schema:issueNumber 2
    57 rdf:type schema:PublicationIssue
    58 Nc2439dc18c734884b5ab603065045782 schema:name dimensions_id
    59 schema:value pub.1035861037
    60 rdf:type schema:PropertyValue
    61 Nd67c0c4736f84d588ed926b0a8ccd04a schema:name doi
    62 schema:value 10.1007/s00209-008-0472-9
    63 rdf:type schema:PropertyValue
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1136443 schema:issn 0025-5874
    71 1432-1823
    72 schema:name Mathematische Zeitschrift
    73 rdf:type schema:Periodical
    74 sg:person.010005440075.15 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    75 schema:familyName Eschenburg
    76 schema:givenName J.-H.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005440075.15
    78 rdf:type schema:Person
    79 sg:person.0634445707.95 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    80 schema:familyName Quast
    81 schema:givenName P.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95
    83 rdf:type schema:Person
    84 sg:pub.10.1007/3-540-16039-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025981100
    85 https://doi.org/10.1007/3-540-16039-6_6
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/978-94-015-6874-6_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089656400
    88 https://doi.org/10.1007/978-94-015-6874-6_13
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf01359868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049836584
    91 https://doi.org/10.1007/bf01359868
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf02678032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009803970
    94 https://doi.org/10.1007/bf02678032
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s00209-006-0071-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000687857
    97 https://doi.org/10.1007/s00209-006-0071-6
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1023/a:1026225029745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015730946
    100 https://doi.org/10.1023/a:1026225029745
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.difgeo.2005.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041599002
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.difgeo.2007.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046686448
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.difgeo.2008.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025656253
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/s0926-2245(03)00055-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035169244
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1017/cbo9780511543036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787016
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1070/rm1991v046n04abeh002826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196209
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1088/0305-4470/39/29/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035842919
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1090/s0002-9947-1970-0259768-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037437997
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1112/plms/s3-57.3.577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045319298
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1112/plms/s3-61.3.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001046496
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.4171/079-1/15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087827143
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.4310/jdg/1214443286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459715
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
    127 schema:name Institut für Mathematik, Universität Augsburg, 86135, Augsburg, Germany
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...