A sufficient condition for nonrigidity of Carnot groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-07

AUTHORS

Alessandro Ottazzi

ABSTRACT

In this article we consider contact mappings on Carnot groups. Namely, we are interested in those mappings whose differential preserves the horizontal space, defined by the first stratum of the natural stratification of the Lie algebra of a Carnot group. We give a sufficient condition for a Carnot group G to admit an infinite dimensional space of contact mappings, that is, for G to be nonrigid. A generalization of Kirillov’s Lemma is also given. Moreover, we construct a new example of nonrigid Carnot group. More... »

PAGES

617-629

References to SciGraph publications

  • 2005-03. Contact and Conformal Maps in in GEOMETRIAE DEDICATA
  • 2001-08. Rigidity of H–type groups in MATHEMATISCHE ZEITSCHRIFT
  • 2004-12. Counter example to the Besicovitch covering property for some Carnot groups equipped with their Carnot-Carathéodory metric in MATHEMATISCHE ZEITSCHRIFT
  • 1999-12. Toda flows and real Hessenberg manifolds in THE JOURNAL OF GEOMETRIC ANALYSIS
  • Journal

    TITLE

    Mathematische Zeitschrift

    ISSUE

    3

    VOLUME

    259

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00209-007-0240-2

    DOI

    http://dx.doi.org/10.1007/s00209-007-0240-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012341346


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Genoa", 
              "id": "https://www.grid.ac/institutes/grid.5606.5", 
              "name": [
                "Mathematisches Institut, Universit\u00e4t Bern, Sidlerstr. 5, 3012, Bern, Switzerland", 
                "DIMA, Universit\u00e0 di Genova, Via Dodecaneso 35, 16146, Genova (1), Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ottazzi", 
            "givenName": "Alessandro", 
            "id": "sg:person.07605167513.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07605167513.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/pl00004887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002183480", 
              "https://doi.org/10.1007/pl00004887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02921975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004167504", 
              "https://doi.org/10.1007/bf02921975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10711-004-4231-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021335155", 
              "https://doi.org/10.1007/s10711-004-4231-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10711-004-4231-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021335155", 
              "https://doi.org/10.1007/s10711-004-4231-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-004-0683-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022192549", 
              "https://doi.org/10.1007/s00209-004-0683-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-004-0683-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022192549", 
              "https://doi.org/10.1007/s00209-004-0683-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-07", 
        "datePublishedReg": "2008-07-01", 
        "description": "In this article we consider contact mappings on Carnot groups. Namely, we are interested in those mappings whose differential preserves the horizontal space, defined by the first stratum of the natural stratification of the Lie algebra of a Carnot group. We give a sufficient condition for a Carnot group G to admit an infinite dimensional space of contact mappings, that is, for G to be nonrigid. A generalization of Kirillov\u2019s Lemma is also given. Moreover, we construct a new example of nonrigid Carnot group.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00209-007-0240-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136443", 
            "issn": [
              "0025-5874", 
              "1432-1823"
            ], 
            "name": "Mathematische Zeitschrift", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "259"
          }
        ], 
        "name": "A sufficient condition for nonrigidity of Carnot groups", 
        "pagination": "617-629", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3acc4bebbfe9f4c819b204fa6d6600bd993286eb3baa8e8c9de340724d324f1b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00209-007-0240-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012341346"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00209-007-0240-2", 
          "https://app.dimensions.ai/details/publication/pub.1012341346"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00209-007-0240-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00209-007-0240-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00209-007-0240-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00209-007-0240-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00209-007-0240-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00209-007-0240-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N55a154539520428a8ddd7206d589a713
    4 schema:citation sg:pub.10.1007/bf02921975
    5 sg:pub.10.1007/pl00004887
    6 sg:pub.10.1007/s00209-004-0683-7
    7 sg:pub.10.1007/s10711-004-4231-8
    8 schema:datePublished 2008-07
    9 schema:datePublishedReg 2008-07-01
    10 schema:description In this article we consider contact mappings on Carnot groups. Namely, we are interested in those mappings whose differential preserves the horizontal space, defined by the first stratum of the natural stratification of the Lie algebra of a Carnot group. We give a sufficient condition for a Carnot group G to admit an infinite dimensional space of contact mappings, that is, for G to be nonrigid. A generalization of Kirillov’s Lemma is also given. Moreover, we construct a new example of nonrigid Carnot group.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N44231611c2414d7984ec3a5549c4914a
    15 Nb14cb3124ba94e4286af04c57b394d17
    16 sg:journal.1136443
    17 schema:name A sufficient condition for nonrigidity of Carnot groups
    18 schema:pagination 617-629
    19 schema:productId N4a6790e1ae6943da9a0dfd6e2e133b65
    20 N6eb7c1caa29d42d182a40de45fef2d32
    21 N98f73f13d6f04caca343a6753d55abc2
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012341346
    23 https://doi.org/10.1007/s00209-007-0240-2
    24 schema:sdDatePublished 2019-04-11T14:28
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N1c27c846ca09403181d7ce22d73f6309
    27 schema:url http://link.springer.com/10.1007%2Fs00209-007-0240-2
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N1c27c846ca09403181d7ce22d73f6309 schema:name Springer Nature - SN SciGraph project
    32 rdf:type schema:Organization
    33 N44231611c2414d7984ec3a5549c4914a schema:volumeNumber 259
    34 rdf:type schema:PublicationVolume
    35 N4a6790e1ae6943da9a0dfd6e2e133b65 schema:name dimensions_id
    36 schema:value pub.1012341346
    37 rdf:type schema:PropertyValue
    38 N55a154539520428a8ddd7206d589a713 rdf:first sg:person.07605167513.81
    39 rdf:rest rdf:nil
    40 N6eb7c1caa29d42d182a40de45fef2d32 schema:name readcube_id
    41 schema:value 3acc4bebbfe9f4c819b204fa6d6600bd993286eb3baa8e8c9de340724d324f1b
    42 rdf:type schema:PropertyValue
    43 N98f73f13d6f04caca343a6753d55abc2 schema:name doi
    44 schema:value 10.1007/s00209-007-0240-2
    45 rdf:type schema:PropertyValue
    46 Nb14cb3124ba94e4286af04c57b394d17 schema:issueNumber 3
    47 rdf:type schema:PublicationIssue
    48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Mathematical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Pure Mathematics
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1136443 schema:issn 0025-5874
    55 1432-1823
    56 schema:name Mathematische Zeitschrift
    57 rdf:type schema:Periodical
    58 sg:person.07605167513.81 schema:affiliation https://www.grid.ac/institutes/grid.5606.5
    59 schema:familyName Ottazzi
    60 schema:givenName Alessandro
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07605167513.81
    62 rdf:type schema:Person
    63 sg:pub.10.1007/bf02921975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004167504
    64 https://doi.org/10.1007/bf02921975
    65 rdf:type schema:CreativeWork
    66 sg:pub.10.1007/pl00004887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002183480
    67 https://doi.org/10.1007/pl00004887
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1007/s00209-004-0683-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022192549
    70 https://doi.org/10.1007/s00209-004-0683-7
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/s10711-004-4231-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021335155
    73 https://doi.org/10.1007/s10711-004-4231-8
    74 rdf:type schema:CreativeWork
    75 https://www.grid.ac/institutes/grid.5606.5 schema:alternateName University of Genoa
    76 schema:name DIMA, Università di Genova, Via Dodecaneso 35, 16146, Genova (1), Italy
    77 Mathematisches Institut, Universität Bern, Sidlerstr. 5, 3012, Bern, Switzerland
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...