BLD-mappings in $W^{2,2}$ are locally invertible View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-10

AUTHORS

Juha Heinonen, Tero Kilpeläinen

ABSTRACT

We prove that mappings of bounded length distortion are local homeomorphisms if they have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}-integrable weak second derivatives.

PAGES

391-396

References to SciGraph publications

  • 1993. Quasiregular Mappings in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002080000129

    DOI

    http://dx.doi.org/10.1007/s002080000129

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045918207


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heinonen", 
            "givenName": "Juha", 
            "id": "sg:person.01047660170.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047660170.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35 (Mattilanniemi D), 40351 Jyv\u00e4skyl\u00e4, Finland (e-mail: terok@math.jyu.fi), FI"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kilpel\u00e4inen", 
            "givenName": "Tero", 
            "id": "sg:person.011161247457.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-78201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032838454", 
              "https://doi.org/10.1007/978-3-642-78201-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-78201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032838454", 
              "https://doi.org/10.1007/978-3-642-78201-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400882588-021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086540640"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-10", 
        "datePublishedReg": "2000-10-01", 
        "description": "We prove that mappings of bounded length distortion are local homeomorphisms if they have \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $L^2$\\end{document}-integrable weak second derivatives.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002080000129", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1120885", 
            "issn": [
              "0025-5831", 
              "1432-1807"
            ], 
            "name": "Mathematische Annalen", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "318"
          }
        ], 
        "name": "BLD-mappings in $W^{2,2}$ are locally invertible", 
        "pagination": "391-396", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dabaca2c8a317d6e6732c6138a0ec5e2e20aa780ee3e3103c35eb53180ff1c86"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002080000129"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045918207"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002080000129", 
          "https://app.dimensions.ai/details/publication/pub.1045918207"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000515.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs002080000129"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002080000129 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Nb08eb394211b4a01b4f98d5e22e958f2
    4 schema:citation sg:pub.10.1007/978-3-642-78201-5
    5 https://doi.org/10.1515/9781400882588-021
    6 schema:datePublished 2000-10
    7 schema:datePublishedReg 2000-10-01
    8 schema:description We prove that mappings of bounded length distortion are local homeomorphisms if they have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}-integrable weak second derivatives.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N9fe4ad9b603e4307beade643c1a71dcc
    13 Nbc0915216d0c4367bc5d1610ab13ee17
    14 sg:journal.1120885
    15 schema:name BLD-mappings in $W^{2,2}$ are locally invertible
    16 schema:pagination 391-396
    17 schema:productId N169121a030fc4130bdbd263dfe977b8c
    18 N4d658ede10a84a1e8500d2a7a4400aa7
    19 N9bd28fcc07564caf804662908c0327f3
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045918207
    21 https://doi.org/10.1007/s002080000129
    22 schema:sdDatePublished 2019-04-11T02:02
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N2a2ba38d970940a3b10dbbf57019e893
    25 schema:url http://link.springer.com/10.1007%2Fs002080000129
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N169121a030fc4130bdbd263dfe977b8c schema:name doi
    30 schema:value 10.1007/s002080000129
    31 rdf:type schema:PropertyValue
    32 N266dcb2a3c924e409dbf47febf7c8728 rdf:first sg:person.011161247457.34
    33 rdf:rest rdf:nil
    34 N2a2ba38d970940a3b10dbbf57019e893 schema:name Springer Nature - SN SciGraph project
    35 rdf:type schema:Organization
    36 N4d658ede10a84a1e8500d2a7a4400aa7 schema:name dimensions_id
    37 schema:value pub.1045918207
    38 rdf:type schema:PropertyValue
    39 N9bd28fcc07564caf804662908c0327f3 schema:name readcube_id
    40 schema:value dabaca2c8a317d6e6732c6138a0ec5e2e20aa780ee3e3103c35eb53180ff1c86
    41 rdf:type schema:PropertyValue
    42 N9fe4ad9b603e4307beade643c1a71dcc schema:issueNumber 2
    43 rdf:type schema:PublicationIssue
    44 Nb08eb394211b4a01b4f98d5e22e958f2 rdf:first sg:person.01047660170.05
    45 rdf:rest N266dcb2a3c924e409dbf47febf7c8728
    46 Nbc0915216d0c4367bc5d1610ab13ee17 schema:volumeNumber 318
    47 rdf:type schema:PublicationVolume
    48 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Psychology and Cognitive Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Psychology
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1120885 schema:issn 0025-5831
    55 1432-1807
    56 schema:name Mathematische Annalen
    57 rdf:type schema:Periodical
    58 sg:person.01047660170.05 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    59 schema:familyName Heinonen
    60 schema:givenName Juha
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047660170.05
    62 rdf:type schema:Person
    63 sg:person.011161247457.34 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    64 schema:familyName Kilpeläinen
    65 schema:givenName Tero
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34
    67 rdf:type schema:Person
    68 sg:pub.10.1007/978-3-642-78201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032838454
    69 https://doi.org/10.1007/978-3-642-78201-5
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1515/9781400882588-021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086540640
    72 rdf:type schema:CreativeWork
    73 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
    74 schema:name Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, US
    75 rdf:type schema:Organization
    76 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
    77 schema:name Department of Mathematics, University of Jyväskylä, P.O. Box 35 (Mattilanniemi D), 40351 Jyväskylä, Finland (e-mail: terok@math.jyu.fi), FI
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...