Ontology type: schema:ScholarlyArticle
2000-10
AUTHORSJuha Heinonen, Tero Kilpeläinen
ABSTRACTWe prove that mappings of bounded length distortion are local homeomorphisms if they have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}-integrable weak second derivatives.
PAGES391-396
http://scigraph.springernature.com/pub.10.1007/s002080000129
DOIhttp://dx.doi.org/10.1007/s002080000129
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045918207
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Michigan\u2013Ann Arbor",
"id": "https://www.grid.ac/institutes/grid.214458.e",
"name": [
"Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, US"
],
"type": "Organization"
},
"familyName": "Heinonen",
"givenName": "Juha",
"id": "sg:person.01047660170.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047660170.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Jyv\u00e4skyl\u00e4",
"id": "https://www.grid.ac/institutes/grid.9681.6",
"name": [
"Department of Mathematics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35 (Mattilanniemi D), 40351 Jyv\u00e4skyl\u00e4, Finland (e-mail: terok@math.jyu.fi), FI"
],
"type": "Organization"
},
"familyName": "Kilpel\u00e4inen",
"givenName": "Tero",
"id": "sg:person.011161247457.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161247457.34"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-642-78201-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032838454",
"https://doi.org/10.1007/978-3-642-78201-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-78201-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032838454",
"https://doi.org/10.1007/978-3-642-78201-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/9781400882588-021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086540640"
],
"type": "CreativeWork"
}
],
"datePublished": "2000-10",
"datePublishedReg": "2000-10-01",
"description": "We prove that mappings of bounded length distortion are local homeomorphisms if they have \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $L^2$\\end{document}-integrable weak second derivatives.",
"genre": "research_article",
"id": "sg:pub.10.1007/s002080000129",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1120885",
"issn": [
"0025-5831",
"1432-1807"
],
"name": "Mathematische Annalen",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "318"
}
],
"name": "BLD-mappings in $W^{2,2}$ are locally invertible",
"pagination": "391-396",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"dabaca2c8a317d6e6732c6138a0ec5e2e20aa780ee3e3103c35eb53180ff1c86"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002080000129"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045918207"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002080000129",
"https://app.dimensions.ai/details/publication/pub.1045918207"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T02:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000515.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs002080000129"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002080000129'
This table displays all metadata directly associated to this object as RDF triples.
78 TRIPLES
21 PREDICATES
29 URIs
19 LITERALS
7 BLANK NODES