Entire surfaces of constant curvature in Minkowski 3-space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-23

AUTHORS

Francesco Bonsante, Andrea Seppi, Peter Smillie

ABSTRACT

This paper concerns the global theory of properly embedded spacelike surfaces in three-dimensional Minkowski space in relation to their Gaussian curvature. We prove that every regular domain which is not a wedge is uniquely foliated by properly embedded convex surfaces of constant Gaussian curvature. This is a consequence of our classification of surfaces with bounded prescribed Gaussian curvature, sometimes called the Minkowski problem, for which partial results were obtained by Li, Guan-Jian-Schoen, and Bonsante-Seppi. Some applications to minimal Lagrangian self-maps of the hyperbolic plane are obtained. More... »

PAGES

1-49

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00208-019-01820-9

DOI

http://dx.doi.org/10.1007/s00208-019-01820-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112965434


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pavia", 
          "id": "https://www.grid.ac/institutes/grid.8982.b", 
          "name": [
            "Dipartimento di Matematica \u201cFelice Casorati\u201d, Universit\u00e0 degli Studi di Pavia, Via Ferrata 5, 27100, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonsante", 
        "givenName": "Francesco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grenoble Alpes University", 
          "id": "https://www.grid.ac/institutes/grid.450307.5", 
          "name": [
            "CNRS and Universit\u00e9 Grenoble Alpes, 100 Rue des Math\u00e9matiques, 38610, Gi\u00e8res, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seppi", 
        "givenName": "Andrea", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Division of Physics, Mathematics and Astronomy, Caltech, Mail Code 253-37, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smillie", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01455315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000457716", 
          "https://doi.org/10.1007/bf01455315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s2-45.3.549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018042138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1968-0230219-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019210748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022893987", 
          "https://doi.org/10.1007/bf01195136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022893987", 
          "https://doi.org/10.1007/bf01195136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2006.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023184586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1994-1169052-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034266587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2016.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038016858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/gt.2013.17.3077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069060524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cag.1995.v3.n1.a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073138423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1122493997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084458551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214445535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.3105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090165495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2017.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099603468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/196-1/16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112257298"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-23", 
    "datePublishedReg": "2019-03-23", 
    "description": "This paper concerns the global theory of properly embedded spacelike surfaces in three-dimensional Minkowski space in relation to their Gaussian curvature. We prove that every regular domain which is not a wedge is uniquely foliated by properly embedded convex surfaces of constant Gaussian curvature. This is a consequence of our classification of surfaces with bounded prescribed Gaussian curvature, sometimes called the Minkowski problem, for which partial results were obtained by Li, Guan-Jian-Schoen, and Bonsante-Seppi. Some applications to minimal Lagrangian self-maps of the hyperbolic plane are obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00208-019-01820-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120885", 
        "issn": [
          "0025-5831", 
          "1432-1807"
        ], 
        "name": "Mathematische Annalen", 
        "type": "Periodical"
      }
    ], 
    "name": "Entire surfaces of constant curvature in Minkowski 3-space", 
    "pagination": "1-49", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7ec291daaf0c1f55d45b0d645ab57d39f6145fd4ed08a8442640473b68462269"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00208-019-01820-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112965434"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00208-019-01820-9", 
      "https://app.dimensions.ai/details/publication/pub.1112965434"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71701_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00208-019-01820-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-019-01820-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-019-01820-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-019-01820-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-019-01820-9'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      39 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00208-019-01820-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N5b68f0a7ce99420cbcd61247b4d731ab
4 schema:citation sg:pub.10.1007/bf01195136
5 sg:pub.10.1007/bf01455315
6 https://doi.org/10.1016/j.aim.2016.09.005
7 https://doi.org/10.1016/j.geomphys.2017.11.006
8 https://doi.org/10.1090/s0002-9939-1968-0230219-6
9 https://doi.org/10.1090/s0002-9939-1994-1169052-5
10 https://doi.org/10.1112/jlms/s2-45.3.549
11 https://doi.org/10.1515/crelle.2006.047
12 https://doi.org/10.2140/gt.2013.17.3077
13 https://doi.org/10.4171/196-1/16
14 https://doi.org/10.4310/cag.1995.v3.n1.a3
15 https://doi.org/10.4310/jdg/1122493997
16 https://doi.org/10.4310/jdg/1214445535
17 https://doi.org/10.5802/aif.2622
18 https://doi.org/10.5802/aif.3105
19 schema:datePublished 2019-03-23
20 schema:datePublishedReg 2019-03-23
21 schema:description This paper concerns the global theory of properly embedded spacelike surfaces in three-dimensional Minkowski space in relation to their Gaussian curvature. We prove that every regular domain which is not a wedge is uniquely foliated by properly embedded convex surfaces of constant Gaussian curvature. This is a consequence of our classification of surfaces with bounded prescribed Gaussian curvature, sometimes called the Minkowski problem, for which partial results were obtained by Li, Guan-Jian-Schoen, and Bonsante-Seppi. Some applications to minimal Lagrangian self-maps of the hyperbolic plane are obtained.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf sg:journal.1120885
26 schema:name Entire surfaces of constant curvature in Minkowski 3-space
27 schema:pagination 1-49
28 schema:productId N0e87798288fe4e378a451e8311df6a3e
29 Na508c1883d1b42e8814383a7fc5d238c
30 Nb105ed47329c4ddb82c38c9e9c80e800
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112965434
32 https://doi.org/10.1007/s00208-019-01820-9
33 schema:sdDatePublished 2019-04-11T13:00
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nfe83137d86f1441a9e160667e99a35d4
36 schema:url https://link.springer.com/10.1007%2Fs00208-019-01820-9
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0e87798288fe4e378a451e8311df6a3e schema:name dimensions_id
41 schema:value pub.1112965434
42 rdf:type schema:PropertyValue
43 N14c0b5962e4c4b52be9987531a1bf807 rdf:first N4aebc866ed7f49658bef8ba76d74515e
44 rdf:rest Nae46e307983944789e957fb751f2a11f
45 N1d110133b10a4f03ba02601ebe58726a schema:affiliation https://www.grid.ac/institutes/grid.8982.b
46 schema:familyName Bonsante
47 schema:givenName Francesco
48 rdf:type schema:Person
49 N2583f16b09964c1fb656dc840c036ada schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
50 schema:familyName Smillie
51 schema:givenName Peter
52 rdf:type schema:Person
53 N4aebc866ed7f49658bef8ba76d74515e schema:affiliation https://www.grid.ac/institutes/grid.450307.5
54 schema:familyName Seppi
55 schema:givenName Andrea
56 rdf:type schema:Person
57 N5b68f0a7ce99420cbcd61247b4d731ab rdf:first N1d110133b10a4f03ba02601ebe58726a
58 rdf:rest N14c0b5962e4c4b52be9987531a1bf807
59 Na508c1883d1b42e8814383a7fc5d238c schema:name doi
60 schema:value 10.1007/s00208-019-01820-9
61 rdf:type schema:PropertyValue
62 Nae46e307983944789e957fb751f2a11f rdf:first N2583f16b09964c1fb656dc840c036ada
63 rdf:rest rdf:nil
64 Nb105ed47329c4ddb82c38c9e9c80e800 schema:name readcube_id
65 schema:value 7ec291daaf0c1f55d45b0d645ab57d39f6145fd4ed08a8442640473b68462269
66 rdf:type schema:PropertyValue
67 Nfe83137d86f1441a9e160667e99a35d4 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
70 schema:name Chemical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Chemistry (incl. Structural)
74 rdf:type schema:DefinedTerm
75 sg:journal.1120885 schema:issn 0025-5831
76 1432-1807
77 schema:name Mathematische Annalen
78 rdf:type schema:Periodical
79 sg:pub.10.1007/bf01195136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022893987
80 https://doi.org/10.1007/bf01195136
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01455315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000457716
83 https://doi.org/10.1007/bf01455315
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.aim.2016.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038016858
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.geomphys.2017.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099603468
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1090/s0002-9939-1968-0230219-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019210748
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/s0002-9939-1994-1169052-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034266587
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1112/jlms/s2-45.3.549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018042138
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1515/crelle.2006.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023184586
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2140/gt.2013.17.3077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069060524
98 rdf:type schema:CreativeWork
99 https://doi.org/10.4171/196-1/16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112257298
100 rdf:type schema:CreativeWork
101 https://doi.org/10.4310/cag.1995.v3.n1.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457537
102 rdf:type schema:CreativeWork
103 https://doi.org/10.4310/jdg/1122493997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458551
104 rdf:type schema:CreativeWork
105 https://doi.org/10.4310/jdg/1214445535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459805
106 rdf:type schema:CreativeWork
107 https://doi.org/10.5802/aif.2622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073138423
108 rdf:type schema:CreativeWork
109 https://doi.org/10.5802/aif.3105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090165495
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
112 schema:name Division of Physics, Mathematics and Astronomy, Caltech, Mail Code 253-37, 91125, Pasadena, CA, USA
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.450307.5 schema:alternateName Grenoble Alpes University
115 schema:name CNRS and Université Grenoble Alpes, 100 Rue des Mathématiques, 38610, Gières, France
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.8982.b schema:alternateName University of Pavia
118 schema:name Dipartimento di Matematica “Felice Casorati”, Università degli Studi di Pavia, Via Ferrata 5, 27100, Pavia, Italy
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...