Covariants of binary sextics and vector-valued Siegel modular forms of genus two View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01-09

AUTHORS

Fabien Cléry, Carel Faber, Gerard van der Geer

ABSTRACT

We extend Igusa’s description of the relation between invariants of binary sextics and Siegel modular forms of degree 2 to a relation between covariants and vector-valued Siegel modular forms of degree 2. We show how this relation can be used to effectively calculate the Fourier expansions of Siegel modular forms of degree 2. More... »

PAGES

1649-1669

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00208-016-1510-2

DOI

http://dx.doi.org/10.1007/s00208-016-1510-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025926526


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Mathematik, Vivatsgasse 7, 53111, Bonn, Germany", 
          "id": "http://www.grid.ac/institutes/grid.461798.5", 
          "name": [
            "Max-Planck-Institut f\u00fcr Mathematik, Vivatsgasse 7, 53111, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cl\u00e9ry", 
        "givenName": "Fabien", 
        "id": "sg:person.011607755050.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011607755050.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80010, 3508 TA, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80010, 3508 TA, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faber", 
        "givenName": "Carel", 
        "id": "sg:person.01317407710.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317407710.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Geer", 
        "givenName": "Gerard", 
        "id": "sg:person.011551332252.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002220050215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015875454", 
          "https://doi.org/10.1007/s002220050215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4264-2_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032654211", 
          "https://doi.org/10.1007/978-1-4612-4264-2_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74119-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044830547", 
          "https://doi.org/10.1007/978-3-540-74119-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0095644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051025175", 
          "https://doi.org/10.1007/bfb0095644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00029-013-0118-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050546812", 
          "https://doi.org/10.1007/s00029-013-0118-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74119-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008756952", 
          "https://doi.org/10.1007/978-3-540-74119-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01214351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000117138", 
          "https://doi.org/10.1007/bf01214351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01444091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021571882", 
          "https://doi.org/10.1007/bf01444091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74119-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028521645", 
          "https://doi.org/10.1007/978-3-540-74119-0_3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-09", 
    "datePublishedReg": "2017-01-09", 
    "description": "We extend Igusa\u2019s description of the relation between invariants of binary sextics and Siegel modular forms of degree 2 to a relation between covariants and vector-valued Siegel modular forms of degree 2. We show how this relation can be used to effectively calculate the Fourier expansions of Siegel modular forms of degree 2.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00208-016-1510-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1120885", 
        "issn": [
          "0025-5831", 
          "1432-1807"
        ], 
        "name": "Mathematische Annalen", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "369"
      }
    ], 
    "keywords": [
      "description", 
      "relation", 
      "form", 
      "Siegel modular forms", 
      "modular forms", 
      "covariant", 
      "expansion", 
      "two", 
      "invariants", 
      "degree 2", 
      "genus two", 
      "Igusa\u2019s description", 
      "binary sextics", 
      "sextics", 
      "vector-valued Siegel modular forms", 
      "Fourier expansion"
    ], 
    "name": "Covariants of binary sextics and vector-valued Siegel modular forms of genus two", 
    "pagination": "1649-1669", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025926526"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00208-016-1510-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00208-016-1510-2", 
      "https://app.dimensions.ai/details/publication/pub.1025926526"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00208-016-1510-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1510-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1510-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1510-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1510-2'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      50 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00208-016-1510-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nda524fe85db5417685d0b0d8f3408c74
4 schema:citation sg:pub.10.1007/978-1-4612-4264-2_6
5 sg:pub.10.1007/978-3-540-74119-0_1
6 sg:pub.10.1007/978-3-540-74119-0_3
7 sg:pub.10.1007/978-3-540-74119-0_4
8 sg:pub.10.1007/bf01214351
9 sg:pub.10.1007/bf01444091
10 sg:pub.10.1007/bfb0095644
11 sg:pub.10.1007/s00029-013-0118-6
12 sg:pub.10.1007/s002220050215
13 schema:datePublished 2017-01-09
14 schema:datePublishedReg 2017-01-09
15 schema:description We extend Igusa’s description of the relation between invariants of binary sextics and Siegel modular forms of degree 2 to a relation between covariants and vector-valued Siegel modular forms of degree 2. We show how this relation can be used to effectively calculate the Fourier expansions of Siegel modular forms of degree 2.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N7bba4f1af26c48668967e4fc50137cb6
20 Nf28b6fb3f00f4432b347d42d7845978d
21 sg:journal.1120885
22 schema:keywords Fourier expansion
23 Igusa’s description
24 Siegel modular forms
25 binary sextics
26 covariant
27 degree 2
28 description
29 expansion
30 form
31 genus two
32 invariants
33 modular forms
34 relation
35 sextics
36 two
37 vector-valued Siegel modular forms
38 schema:name Covariants of binary sextics and vector-valued Siegel modular forms of genus two
39 schema:pagination 1649-1669
40 schema:productId N4b4c90036d154bc28b39a23b4f15cf3f
41 N6c3bd07bc490434caa5cd7bd11a72fd3
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025926526
43 https://doi.org/10.1007/s00208-016-1510-2
44 schema:sdDatePublished 2021-12-01T19:40
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nd021fe5ed9684eaaaae2d510911140de
47 schema:url https://doi.org/10.1007/s00208-016-1510-2
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N05d84128084d4e43951bbccb3bbd40cb rdf:first sg:person.01317407710.91
52 rdf:rest Nccd1078b794d47638903dc59a482f885
53 N4b4c90036d154bc28b39a23b4f15cf3f schema:name doi
54 schema:value 10.1007/s00208-016-1510-2
55 rdf:type schema:PropertyValue
56 N6c3bd07bc490434caa5cd7bd11a72fd3 schema:name dimensions_id
57 schema:value pub.1025926526
58 rdf:type schema:PropertyValue
59 N7bba4f1af26c48668967e4fc50137cb6 schema:volumeNumber 369
60 rdf:type schema:PublicationVolume
61 Nccd1078b794d47638903dc59a482f885 rdf:first sg:person.011551332252.27
62 rdf:rest rdf:nil
63 Nd021fe5ed9684eaaaae2d510911140de schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nda524fe85db5417685d0b0d8f3408c74 rdf:first sg:person.011607755050.36
66 rdf:rest N05d84128084d4e43951bbccb3bbd40cb
67 Nf28b6fb3f00f4432b347d42d7845978d schema:issueNumber 3-4
68 rdf:type schema:PublicationIssue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1120885 schema:issn 0025-5831
76 1432-1807
77 schema:name Mathematische Annalen
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
81 schema:familyName van der Geer
82 schema:givenName Gerard
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
84 rdf:type schema:Person
85 sg:person.011607755050.36 schema:affiliation grid-institutes:grid.461798.5
86 schema:familyName Cléry
87 schema:givenName Fabien
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011607755050.36
89 rdf:type schema:Person
90 sg:person.01317407710.91 schema:affiliation grid-institutes:grid.5477.1
91 schema:familyName Faber
92 schema:givenName Carel
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317407710.91
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4612-4264-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032654211
96 https://doi.org/10.1007/978-1-4612-4264-2_6
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-540-74119-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044830547
99 https://doi.org/10.1007/978-3-540-74119-0_1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-540-74119-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028521645
102 https://doi.org/10.1007/978-3-540-74119-0_3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-540-74119-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008756952
105 https://doi.org/10.1007/978-3-540-74119-0_4
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01214351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000117138
108 https://doi.org/10.1007/bf01214351
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01444091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021571882
111 https://doi.org/10.1007/bf01444091
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bfb0095644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051025175
114 https://doi.org/10.1007/bfb0095644
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00029-013-0118-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050546812
117 https://doi.org/10.1007/s00029-013-0118-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s002220050215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015875454
120 https://doi.org/10.1007/s002220050215
121 rdf:type schema:CreativeWork
122 grid-institutes:grid.461798.5 schema:alternateName Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany
123 schema:name Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany
124 rdf:type schema:Organization
125 grid-institutes:grid.5477.1 schema:alternateName Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80010, 3508 TA, Utrecht, The Netherlands
126 schema:name Mathematisch Instituut, Universiteit Utrecht, P.O. Box 80010, 3508 TA, Utrecht, The Netherlands
127 rdf:type schema:Organization
128 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
129 schema:name Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...