Pointwise equidistribution with an error rate and with respect to unbounded functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02

AUTHORS

Dmitry Kleinbock, Ronggang Shi, Barak Weiss

ABSTRACT

Consider G=SLd(R) and Γ=SLd(Z). It was recently shown by the second-named author (Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space (preprint), arXiv:1405.2067, 2014) that for some diagonal subgroups {gt}⊂G and unipotent subgroups U⊂G, gt-trajectories of almost all points on all U-orbits on G/Γ are equidistributed with respect to continuous compactly supported functions φ on G/Γ. In this paper we strengthen this result in two directions: by exhibiting an error rate of equidistribution when φ is smooth and compactly supported, and by proving equidistribution with respect to certain unbounded functions, namely Siegel transforms of Riemann integrable functions on Rd. For the first part we use a method based on effective double equidistribution of gt-translates of U-orbits, which generalizes the main result of Kleinbock and Margulis (On effective equidistribution of expanding translates of certain orbits in the space of lattices, Number theory, analysis and geometry 385–396, 2012). The second part is based on Schmidt’s results on counting of lattice points. Number-theoretic consequences involving spiraling of lattice approximations, extending recent work of Athreya et al. (J Lond Math Soc 91(2):383–404, 2015), are derived using the equidistribution result. More... »

PAGES

857-879

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00208-016-1404-3

DOI

http://dx.doi.org/10.1007/s00208-016-1404-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016943212


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brandeis University", 
          "id": "https://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Mathematics, Brandeis University, 02454, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleinbock", 
        "givenName": "Dmitry", 
        "id": "sg:person.013076036113.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "School of Mathematical Sciences, Xiamen University, 361005, Xiamen, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Ronggang", 
        "id": "sg:person.012766717774.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012766717774.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Mathematical Sciences, Tel Aviv University, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Barak", 
        "id": "sg:person.015110350017.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110350017.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1112/jlms/jdu082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008035974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1960-0117222-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008425426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-1260-1_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028241289", 
          "https://doi.org/10.1007/978-1-4614-1260-1_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-014-2011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038441122", 
          "https://doi.org/10.1007/s00220-014-2011-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02189316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051221569", 
          "https://doi.org/10.1007/bf02189316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02189316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051221569", 
          "https://doi.org/10.1007/bf02189316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100025688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053860079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700000298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054030518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1996v051n04abeh002964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058196838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1126078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062867475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-98-09503-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/120984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/jmd.2008.2.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/jmd.2016.10.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1960-056-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264337"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "Consider G=SLd(R) and \u0393=SLd(Z). It was recently shown by the second-named author (Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space (preprint), arXiv:1405.2067, 2014) that for some diagonal subgroups {gt}\u2282G and unipotent subgroups U\u2282G, gt-trajectories of almost all points on all U-orbits on G/\u0393 are equidistributed with respect to continuous compactly supported functions \u03c6 on G/\u0393. In this paper we strengthen this result in two directions: by exhibiting an error rate of equidistribution when \u03c6 is smooth and compactly supported, and by proving equidistribution with respect to certain unbounded functions, namely Siegel transforms of Riemann integrable functions on Rd. For the first part we use a method based on effective double equidistribution of gt-translates of U-orbits, which generalizes the main result of Kleinbock and Margulis (On effective equidistribution of expanding translates of certain orbits in the space of lattices, Number theory, analysis and geometry 385\u2013396, 2012). The second part is based on Schmidt\u2019s results on counting of lattice points. Number-theoretic consequences involving spiraling of lattice approximations, extending recent work of Athreya et al. (J Lond Math Soc 91(2):383\u2013404, 2015), are derived using the equidistribution result.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00208-016-1404-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3124200", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7003881", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7206963", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3786863", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7173351", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1120885", 
        "issn": [
          "0025-5831", 
          "1432-1807"
        ], 
        "name": "Mathematische Annalen", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "Pointwise equidistribution with an error rate and with respect to unbounded functions", 
    "pagination": "857-879", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50b9b850b8a3b46b04dcb69b2b81e7fc3185f3bac59c3174af88c9c0e65c0633"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00208-016-1404-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016943212"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00208-016-1404-3", 
      "https://app.dimensions.ai/details/publication/pub.1016943212"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00208-016-1404-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1404-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1404-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1404-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-016-1404-3'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00208-016-1404-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4692a75de40a4a8f91275106cc75413f
4 schema:citation sg:pub.10.1007/978-1-4614-1260-1_18
5 sg:pub.10.1007/bf02189316
6 sg:pub.10.1007/s00220-014-2011-3
7 https://doi.org/10.1017/s0143385700000298
8 https://doi.org/10.1017/s0305004100025688
9 https://doi.org/10.1070/rm1996v051n04abeh002964
10 https://doi.org/10.1090/s0002-9947-1960-0117222-9
11 https://doi.org/10.1112/jlms/jdu082
12 https://doi.org/10.1137/1126078
13 https://doi.org/10.1215/s0012-7094-98-09503-5
14 https://doi.org/10.2307/120984
15 https://doi.org/10.2307/1969027
16 https://doi.org/10.3934/jmd.2008.2.43
17 https://doi.org/10.3934/jmd.2016.10.81
18 https://doi.org/10.4153/cjm-1960-056-0
19 schema:datePublished 2017-02
20 schema:datePublishedReg 2017-02-01
21 schema:description Consider G=SLd(R) and Γ=SLd(Z). It was recently shown by the second-named author (Shi, Pointwise equidistribution for one parameter diagonalizable group action on homogeneous space (preprint), arXiv:1405.2067, 2014) that for some diagonal subgroups {gt}⊂G and unipotent subgroups U⊂G, gt-trajectories of almost all points on all U-orbits on G/Γ are equidistributed with respect to continuous compactly supported functions φ on G/Γ. In this paper we strengthen this result in two directions: by exhibiting an error rate of equidistribution when φ is smooth and compactly supported, and by proving equidistribution with respect to certain unbounded functions, namely Siegel transforms of Riemann integrable functions on Rd. For the first part we use a method based on effective double equidistribution of gt-translates of U-orbits, which generalizes the main result of Kleinbock and Margulis (On effective equidistribution of expanding translates of certain orbits in the space of lattices, Number theory, analysis and geometry 385–396, 2012). The second part is based on Schmidt’s results on counting of lattice points. Number-theoretic consequences involving spiraling of lattice approximations, extending recent work of Athreya et al. (J Lond Math Soc 91(2):383–404, 2015), are derived using the equidistribution result.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N21b4dec417a54f3b83783afab832642f
26 Ncb37651977094af9bbc412e730932abc
27 sg:journal.1120885
28 schema:name Pointwise equidistribution with an error rate and with respect to unbounded functions
29 schema:pagination 857-879
30 schema:productId N0d3e874fd29744ec8553ffa2bea8a86a
31 N5ff7dede108e49ccb7a9df1daaae6dc9
32 Nc259ed6a8dac497d96549ad8a28e9e8b
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016943212
34 https://doi.org/10.1007/s00208-016-1404-3
35 schema:sdDatePublished 2019-04-11T00:15
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N77350239e8244b14b0e340ffee409c38
38 schema:url http://link.springer.com/10.1007%2Fs00208-016-1404-3
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0d3e874fd29744ec8553ffa2bea8a86a schema:name readcube_id
43 schema:value 50b9b850b8a3b46b04dcb69b2b81e7fc3185f3bac59c3174af88c9c0e65c0633
44 rdf:type schema:PropertyValue
45 N18c7b3375c83473695cb43c495fa764c rdf:first sg:person.015110350017.34
46 rdf:rest rdf:nil
47 N21b4dec417a54f3b83783afab832642f schema:issueNumber 1-2
48 rdf:type schema:PublicationIssue
49 N4692a75de40a4a8f91275106cc75413f rdf:first sg:person.013076036113.18
50 rdf:rest Ndff11a53be314772bf82e89964232cf8
51 N5ff7dede108e49ccb7a9df1daaae6dc9 schema:name dimensions_id
52 schema:value pub.1016943212
53 rdf:type schema:PropertyValue
54 N77350239e8244b14b0e340ffee409c38 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nc259ed6a8dac497d96549ad8a28e9e8b schema:name doi
57 schema:value 10.1007/s00208-016-1404-3
58 rdf:type schema:PropertyValue
59 Ncb37651977094af9bbc412e730932abc schema:volumeNumber 367
60 rdf:type schema:PublicationVolume
61 Ndff11a53be314772bf82e89964232cf8 rdf:first sg:person.012766717774.03
62 rdf:rest N18c7b3375c83473695cb43c495fa764c
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:grant.3124200 http://pending.schema.org/fundedItem sg:pub.10.1007/s00208-016-1404-3
70 rdf:type schema:MonetaryGrant
71 sg:grant.3786863 http://pending.schema.org/fundedItem sg:pub.10.1007/s00208-016-1404-3
72 rdf:type schema:MonetaryGrant
73 sg:grant.7003881 http://pending.schema.org/fundedItem sg:pub.10.1007/s00208-016-1404-3
74 rdf:type schema:MonetaryGrant
75 sg:grant.7173351 http://pending.schema.org/fundedItem sg:pub.10.1007/s00208-016-1404-3
76 rdf:type schema:MonetaryGrant
77 sg:grant.7206963 http://pending.schema.org/fundedItem sg:pub.10.1007/s00208-016-1404-3
78 rdf:type schema:MonetaryGrant
79 sg:journal.1120885 schema:issn 0025-5831
80 1432-1807
81 schema:name Mathematische Annalen
82 rdf:type schema:Periodical
83 sg:person.012766717774.03 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
84 schema:familyName Shi
85 schema:givenName Ronggang
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012766717774.03
87 rdf:type schema:Person
88 sg:person.013076036113.18 schema:affiliation https://www.grid.ac/institutes/grid.253264.4
89 schema:familyName Kleinbock
90 schema:givenName Dmitry
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18
92 rdf:type schema:Person
93 sg:person.015110350017.34 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
94 schema:familyName Weiss
95 schema:givenName Barak
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015110350017.34
97 rdf:type schema:Person
98 sg:pub.10.1007/978-1-4614-1260-1_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028241289
99 https://doi.org/10.1007/978-1-4614-1260-1_18
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02189316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051221569
102 https://doi.org/10.1007/bf02189316
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00220-014-2011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038441122
105 https://doi.org/10.1007/s00220-014-2011-3
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/s0143385700000298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054030518
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1017/s0305004100025688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053860079
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1070/rm1996v051n04abeh002964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196838
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/s0002-9947-1960-0117222-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008425426
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1112/jlms/jdu082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008035974
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1137/1126078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062867475
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1215/s0012-7094-98-09503-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420460
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2307/120984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397459
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2307/1969027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674431
124 rdf:type schema:CreativeWork
125 https://doi.org/10.3934/jmd.2008.2.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740535
126 rdf:type schema:CreativeWork
127 https://doi.org/10.3934/jmd.2016.10.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740734
128 rdf:type schema:CreativeWork
129 https://doi.org/10.4153/cjm-1960-056-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264337
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
132 schema:name School of Mathematical Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
135 schema:name School of Mathematical Sciences, Xiamen University, 361005, Xiamen, People’s Republic of China
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.253264.4 schema:alternateName Brandeis University
138 schema:name Department of Mathematics, Brandeis University, 02454, Waltham, MA, USA
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...