Ontology type: schema:ScholarlyArticle
2013-05
AUTHORSP. Albano, P. Cannarsa, Khai T. Nguyen, C. Sinestrari
ABSTRACTLet be a Riemannian manifold and let be a bounded open subset of . It is well known that significant information about the geometry of is encoded into the properties of the distance, , from the boundary of . Here, we show that the generalized gradient flow associated with the distance preserves singularities, that is, if is a singular point of then the generalized characteristic starting at stays singular for all times. As an application, we deduce that the singular set of has the same homotopy type as . More... »
PAGES23-43
http://scigraph.springernature.com/pub.10.1007/s00208-012-0835-8
DOIhttp://dx.doi.org/10.1007/s00208-012-0835-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026992846
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Bologna",
"id": "https://www.grid.ac/institutes/grid.6292.f",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Bologna, Piazza di Porta San Donato 5, 40127, Bologna, Italy"
],
"type": "Organization"
},
"familyName": "Albano",
"givenName": "P.",
"id": "sg:person.014423462135.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423462135.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica 1, 00133, Rome, Italy"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "P.",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Padua",
"id": "https://www.grid.ac/institutes/grid.5608.b",
"name": [
"Dipartimento di Matematica Pura ed Applicata, Universit\u00e0 di Padova, Via Trieste 63, 35121, Padua, Italy"
],
"type": "Organization"
},
"familyName": "Nguyen",
"givenName": "Khai T.",
"id": "sg:person.011501341532.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011501341532.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica 1, 00133, Rome, Italy"
],
"type": "Organization"
},
"familyName": "Sinestrari",
"givenName": "C.",
"id": "sg:person.010746770411.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746770411.97"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/b106657_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003457099",
"https://doi.org/10.1007/b106657_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002050100176",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005697121",
"https://doi.org/10.1007/s002050100176"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1984-0732102-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009454689"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-18245-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024721376",
"https://doi.org/10.1007/978-3-642-18245-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-18245-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024721376",
"https://doi.org/10.1007/978-3-642-18245-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cad.2004.01.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029597964"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02567770",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052475767",
"https://doi.org/10.1007/bf02567770"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02567770",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052475767",
"https://doi.org/10.1007/bf02567770"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1070/sm1975v027n03abeh002522",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058199504"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1971164",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069676461"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/jems/173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072317752"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/sdg.2006.v11.n1.a6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072463927"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-2201-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705737",
"https://doi.org/10.1007/978-1-4757-2201-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-2201-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705737",
"https://doi.org/10.1007/978-1-4757-2201-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-010-9557-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109716865",
"https://doi.org/10.1007/978-94-010-9557-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-010-9557-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109716865",
"https://doi.org/10.1007/978-94-010-9557-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-05",
"datePublishedReg": "2013-05-01",
"description": "Let be a Riemannian manifold and let be a bounded open subset of . It is well known that significant information about the geometry of is encoded into the properties of the distance, , from the boundary of . Here, we show that the generalized gradient flow associated with the distance preserves singularities, that is, if is a singular point of then the generalized characteristic starting at stays singular for all times. As an application, we deduce that the singular set of has the same homotopy type as .",
"genre": "research_article",
"id": "sg:pub.10.1007/s00208-012-0835-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1120885",
"issn": [
"0025-5831",
"1432-1807"
],
"name": "Mathematische Annalen",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "356"
}
],
"name": "Singular gradient flow of the distance function and homotopy equivalence",
"pagination": "23-43",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"80968b1f113808b4c5825ecd182a9293ac0375c10df2eadc283bde38aa5b3657"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00208-012-0835-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026992846"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00208-012-0835-8",
"https://app.dimensions.ai/details/publication/pub.1026992846"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T22:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000587.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00208-012-0835-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-012-0835-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-012-0835-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-012-0835-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-012-0835-8'
This table displays all metadata directly associated to this object as RDF triples.
134 TRIPLES
21 PREDICATES
40 URIs
19 LITERALS
7 BLANK NODES