Ontology type: schema:ScholarlyArticle Open Access: True
2012-10
AUTHORS ABSTRACTWe examine mappings of finite distortion from Euclidean spaces into Riemannian manifolds. We use integral type isoperimetric inequalities to obtain Liouville type growth results under mild assumptions on the distortion of the mappings and the geometry of the manifolds.
PAGES685-705
http://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3
DOIhttp://dx.doi.org/10.1007/s00208-011-0751-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1044199933
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"author": [
{
"affiliation": {
"alternateName": "Syracuse University",
"id": "https://www.grid.ac/institutes/grid.264484.8",
"name": [
"Department of Mathematics, Syracuse University, 215 Carnegie Hall, 13244-1150, Syracuse, NY, USA"
],
"type": "Organization"
},
"familyName": "Onninen",
"givenName": "Jani",
"id": "sg:person.010712126705.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010712126705.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Helsinki",
"id": "https://www.grid.ac/institutes/grid.7737.4",
"name": [
"Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland"
],
"type": "Organization"
},
"familyName": "Pankka",
"givenName": "Pekka",
"id": "sg:person.01252167767.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-0-8176-4583-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009297461",
"https://doi.org/10.1007/978-0-8176-4583-0"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1009297461",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-0131-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017376824",
"https://doi.org/10.1007/978-1-4613-0131-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-0131-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017376824",
"https://doi.org/10.1007/978-1-4613-0131-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02401840",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027131102",
"https://doi.org/10.1007/bf02401840"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02505905",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031544726",
"https://doi.org/10.1007/bf02505905"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02505905",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031544726",
"https://doi.org/10.1007/bf02505905"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-78201-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032838454",
"https://doi.org/10.1007/978-3-642-78201-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-78201-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032838454",
"https://doi.org/10.1007/978-3-642-78201-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02760602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036447806",
"https://doi.org/10.1007/bf02760602"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/crelle.2007.093",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037438726"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00039-001-8227-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048494960",
"https://doi.org/10.1007/s00039-001-8227-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0273-0979-1995-00583-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053602072"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/memo/0899",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059343948"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/s0012-7094-08-14123-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064415726"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1512/iumj.2005.54.2665",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067513519"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/138",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072320411"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/cag.2003.v11.n1.a5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072457751"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-10",
"datePublishedReg": "2012-10-01",
"description": "We examine mappings of finite distortion from Euclidean spaces into Riemannian manifolds. We use integral type isoperimetric inequalities to obtain Liouville type growth results under mild assumptions on the distortion of the mappings and the geometry of the manifolds.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00208-011-0751-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1120885",
"issn": [
"0025-5831",
"1432-1807"
],
"name": "Mathematische Annalen",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "354"
}
],
"name": "Slow mappings of finite distortion",
"pagination": "685-705",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d289fa28b012a307cce7cd29f546164d198342c323d0ecac85d9187fd39e228f"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00208-011-0751-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1044199933"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00208-011-0751-3",
"https://app.dimensions.ai/details/publication/pub.1044199933"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T19:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000515.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00208-011-0751-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
20 PREDICATES
40 URIs
19 LITERALS
7 BLANK NODES