Slow mappings of finite distortion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Jani Onninen, Pekka Pankka

ABSTRACT

We examine mappings of finite distortion from Euclidean spaces into Riemannian manifolds. We use integral type isoperimetric inequalities to obtain Liouville type growth results under mild assumptions on the distortion of the mappings and the geometry of the manifolds.

PAGES

685-705

Journal

TITLE

Mathematische Annalen

ISSUE

2

VOLUME

354

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3

DOI

http://dx.doi.org/10.1007/s00208-011-0751-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044199933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Syracuse University", 
          "id": "https://www.grid.ac/institutes/grid.264484.8", 
          "name": [
            "Department of Mathematics, Syracuse University, 215 Carnegie Hall, 13244-1150, Syracuse, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Onninen", 
        "givenName": "Jani", 
        "id": "sg:person.010712126705.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010712126705.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pankka", 
        "givenName": "Pekka", 
        "id": "sg:person.01252167767.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-0-8176-4583-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009297461", 
          "https://doi.org/10.1007/978-0-8176-4583-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1009297461", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0131-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017376824", 
          "https://doi.org/10.1007/978-1-4613-0131-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0131-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017376824", 
          "https://doi.org/10.1007/978-1-4613-0131-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02401840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027131102", 
          "https://doi.org/10.1007/bf02401840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02505905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031544726", 
          "https://doi.org/10.1007/bf02505905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02505905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031544726", 
          "https://doi.org/10.1007/bf02505905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-78201-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838454", 
          "https://doi.org/10.1007/978-3-642-78201-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-78201-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032838454", 
          "https://doi.org/10.1007/978-3-642-78201-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02760602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036447806", 
          "https://doi.org/10.1007/bf02760602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2007.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037438726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00039-001-8227-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048494960", 
          "https://doi.org/10.1007/s00039-001-8227-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1995-00583-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053602072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-08-14123-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2005.54.2665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067513519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cag.2003.v11.n1.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457751"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "We examine mappings of finite distortion from Euclidean spaces into Riemannian manifolds. We use integral type isoperimetric inequalities to obtain Liouville type growth results under mild assumptions on the distortion of the mappings and the geometry of the manifolds.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00208-011-0751-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1120885", 
        "issn": [
          "0025-5831", 
          "1432-1807"
        ], 
        "name": "Mathematische Annalen", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "354"
      }
    ], 
    "name": "Slow mappings of finite distortion", 
    "pagination": "685-705", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d289fa28b012a307cce7cd29f546164d198342c323d0ecac85d9187fd39e228f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00208-011-0751-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044199933"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00208-011-0751-3", 
      "https://app.dimensions.ai/details/publication/pub.1044199933"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00208-011-0751-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-011-0751-3'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      20 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00208-011-0751-3 schema:author N3d6bd94c70264aaea843737bdc9edb9e
2 schema:citation sg:pub.10.1007/978-0-8176-4583-0
3 sg:pub.10.1007/978-1-4613-0131-8
4 sg:pub.10.1007/978-3-642-78201-5
5 sg:pub.10.1007/bf02401840
6 sg:pub.10.1007/bf02505905
7 sg:pub.10.1007/bf02760602
8 sg:pub.10.1007/s00039-001-8227-3
9 https://app.dimensions.ai/details/publication/pub.1009297461
10 https://doi.org/10.1090/memo/0899
11 https://doi.org/10.1090/s0273-0979-1995-00583-5
12 https://doi.org/10.1215/s0012-7094-08-14123-7
13 https://doi.org/10.1512/iumj.2005.54.2665
14 https://doi.org/10.1515/crelle.2007.093
15 https://doi.org/10.4171/rmi/138
16 https://doi.org/10.4310/cag.2003.v11.n1.a5
17 schema:datePublished 2012-10
18 schema:datePublishedReg 2012-10-01
19 schema:description We examine mappings of finite distortion from Euclidean spaces into Riemannian manifolds. We use integral type isoperimetric inequalities to obtain Liouville type growth results under mild assumptions on the distortion of the mappings and the geometry of the manifolds.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Nbcc60f2eba874e258c2c7276e36b0776
24 Nd866d06c1a624f32b311ef9dbaa2c05b
25 sg:journal.1120885
26 schema:name Slow mappings of finite distortion
27 schema:pagination 685-705
28 schema:productId N3efc26cb78984fcfa9768e36ac659f2f
29 N8b68cc96cee446e5a8808625f1fb98ea
30 Nabd8eee56c44433e8dc9e91c7787a7bc
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044199933
32 https://doi.org/10.1007/s00208-011-0751-3
33 schema:sdDatePublished 2019-04-10T19:09
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N6013cfe745954996a7820937f9d06e40
36 schema:url http://link.springer.com/10.1007%2Fs00208-011-0751-3
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N3d6bd94c70264aaea843737bdc9edb9e rdf:first sg:person.010712126705.12
41 rdf:rest N4f53f99d56eb4edd80bfbbda298651ed
42 N3efc26cb78984fcfa9768e36ac659f2f schema:name doi
43 schema:value 10.1007/s00208-011-0751-3
44 rdf:type schema:PropertyValue
45 N4f53f99d56eb4edd80bfbbda298651ed rdf:first sg:person.01252167767.43
46 rdf:rest rdf:nil
47 N6013cfe745954996a7820937f9d06e40 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N8b68cc96cee446e5a8808625f1fb98ea schema:name dimensions_id
50 schema:value pub.1044199933
51 rdf:type schema:PropertyValue
52 Nabd8eee56c44433e8dc9e91c7787a7bc schema:name readcube_id
53 schema:value d289fa28b012a307cce7cd29f546164d198342c323d0ecac85d9187fd39e228f
54 rdf:type schema:PropertyValue
55 Nbcc60f2eba874e258c2c7276e36b0776 schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 Nd866d06c1a624f32b311ef9dbaa2c05b schema:volumeNumber 354
58 rdf:type schema:PublicationVolume
59 sg:journal.1120885 schema:issn 0025-5831
60 1432-1807
61 schema:name Mathematische Annalen
62 rdf:type schema:Periodical
63 sg:person.010712126705.12 schema:affiliation https://www.grid.ac/institutes/grid.264484.8
64 schema:familyName Onninen
65 schema:givenName Jani
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010712126705.12
67 rdf:type schema:Person
68 sg:person.01252167767.43 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
69 schema:familyName Pankka
70 schema:givenName Pekka
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43
72 rdf:type schema:Person
73 sg:pub.10.1007/978-0-8176-4583-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009297461
74 https://doi.org/10.1007/978-0-8176-4583-0
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/978-1-4613-0131-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017376824
77 https://doi.org/10.1007/978-1-4613-0131-8
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/978-3-642-78201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032838454
80 https://doi.org/10.1007/978-3-642-78201-5
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf02401840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027131102
83 https://doi.org/10.1007/bf02401840
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02505905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031544726
86 https://doi.org/10.1007/bf02505905
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02760602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036447806
89 https://doi.org/10.1007/bf02760602
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00039-001-8227-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048494960
92 https://doi.org/10.1007/s00039-001-8227-3
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1009297461 schema:CreativeWork
95 https://doi.org/10.1090/memo/0899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343948
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/s0273-0979-1995-00583-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053602072
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1215/s0012-7094-08-14123-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415726
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1512/iumj.2005.54.2665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067513519
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1515/crelle.2007.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037438726
104 rdf:type schema:CreativeWork
105 https://doi.org/10.4171/rmi/138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320411
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4310/cag.2003.v11.n1.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457751
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.264484.8 schema:alternateName Syracuse University
110 schema:name Department of Mathematics, Syracuse University, 215 Carnegie Hall, 13244-1150, Syracuse, NY, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
113 schema:name Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...