Equidistribution of Heegner points and the partition function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-10

AUTHORS

Amanda Folsom, Riad Masri

ABSTRACT

Let p(n) denote the number of partitions of a positive integer n. In this paper we study the asymptotic growth of p(n) using the equidistribution of Galois orbits of Heegner points on the modular curve X0(6). We obtain a new asymptotic formula for p(n) with an effective error term which is for some δ > 0. We then use this asymptotic formula to sharpen the classical bounds of Hardy and Ramanujan, Rademacher, and Lehmer on the error term in Rademacher’s exact formula for p(n). More... »

PAGES

289-317

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00208-010-0478-6

DOI

http://dx.doi.org/10.1007/s00208-010-0478-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046269669


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Mathematics, University of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Folsom", 
        "givenName": "Amanda", 
        "id": "sg:person.014433460651.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433460651.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Mathematics, University of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masri", 
        "givenName": "Riad", 
        "id": "sg:person.0717644044.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717644044.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-07-08883-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003767168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01458081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026477938", 
          "https://doi.org/10.1007/bf01458081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01458081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026477938", 
          "https://doi.org/10.1007/bf01458081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1939-0000410-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027829321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000015932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038401870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01388809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039451295", 
          "https://doi.org/10.1007/bf01388809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1938-1501943-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047924428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-80615-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049342383", 
          "https://doi.org/10.1007/978-3-642-80615-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-80615-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049342383", 
          "https://doi.org/10.1007/978-3-642-80615-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01393993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049841809", 
          "https://doi.org/10.1007/bf01393993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-005-0468-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050953835", 
          "https://doi.org/10.1007/s00222-005-0468-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-005-0468-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050953835", 
          "https://doi.org/10.1007/s00222-005-0468-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-005-0706-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052775798", 
          "https://doi.org/10.1007/s00208-005-0706-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/121132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/ajm.2001.v5.n2.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cdm.2008.v2008.n1.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072458298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098702807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740272"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "Let p(n) denote the number of partitions of a positive integer n. In this paper we study the asymptotic growth of p(n) using the equidistribution of Galois orbits of Heegner points on the modular curve X0(6). We obtain a new asymptotic formula for p(n) with an effective error term which is for some \u03b4 > 0. We then use this asymptotic formula to sharpen the classical bounds of Hardy and Ramanujan, Rademacher, and Lehmer on the error term in Rademacher\u2019s exact formula for p(n).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00208-010-0478-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120885", 
        "issn": [
          "0025-5831", 
          "1432-1807"
        ], 
        "name": "Mathematische Annalen", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "348"
      }
    ], 
    "name": "Equidistribution of Heegner points and the partition function", 
    "pagination": "289-317", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dc682a877fb1a3d54353495480f3df8be6a94582d1540f985993dd887ad41149"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00208-010-0478-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046269669"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00208-010-0478-6", 
      "https://app.dimensions.ai/details/publication/pub.1046269669"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89812_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00208-010-0478-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-010-0478-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-010-0478-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-010-0478-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-010-0478-6'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00208-010-0478-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N272e4776d9924994ac9bdfbf14eeb7a1
4 schema:citation sg:pub.10.1007/978-3-642-80615-5
5 sg:pub.10.1007/bf01388809
6 sg:pub.10.1007/bf01393993
7 sg:pub.10.1007/bf01458081
8 sg:pub.10.1007/s00208-005-0706-7
9 sg:pub.10.1007/s00222-005-0468-6
10 https://doi.org/10.1017/s0027763000015932
11 https://doi.org/10.1090/coll/053
12 https://doi.org/10.1090/gsm/017
13 https://doi.org/10.1090/gsm/053
14 https://doi.org/10.1090/s0002-9939-07-08883-1
15 https://doi.org/10.1090/s0002-9947-1938-1501943-5
16 https://doi.org/10.1090/s0002-9947-1939-0000410-9
17 https://doi.org/10.2307/121132
18 https://doi.org/10.2307/1968973
19 https://doi.org/10.4310/ajm.2001.v5.n2.a1
20 https://doi.org/10.4310/cdm.2008.v2008.n1.a5
21 schema:datePublished 2010-10
22 schema:datePublishedReg 2010-10-01
23 schema:description Let p(n) denote the number of partitions of a positive integer n. In this paper we study the asymptotic growth of p(n) using the equidistribution of Galois orbits of Heegner points on the modular curve X0(6). We obtain a new asymptotic formula for p(n) with an effective error term which is for some δ > 0. We then use this asymptotic formula to sharpen the classical bounds of Hardy and Ramanujan, Rademacher, and Lehmer on the error term in Rademacher’s exact formula for p(n).
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N00b570b917d94cbb9de966af72275559
28 Nbd349458f9be4bcc9dd564b0c63a657a
29 sg:journal.1120885
30 schema:name Equidistribution of Heegner points and the partition function
31 schema:pagination 289-317
32 schema:productId N003b0bcd3242450f80c47e8f39709c1c
33 Nb5edc6a2ee1947ffaed12aa6f3b5ee83
34 Nbef3a8a2fc744418bdaf06ab5d753057
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046269669
36 https://doi.org/10.1007/s00208-010-0478-6
37 schema:sdDatePublished 2019-04-11T09:58
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N87ac4733980f4d478b17d93ff57a0afc
40 schema:url http://link.springer.com/10.1007%2Fs00208-010-0478-6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N003b0bcd3242450f80c47e8f39709c1c schema:name dimensions_id
45 schema:value pub.1046269669
46 rdf:type schema:PropertyValue
47 N00b570b917d94cbb9de966af72275559 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 N184974f43b75469f9ea972d4d5338882 rdf:first sg:person.0717644044.71
50 rdf:rest rdf:nil
51 N272e4776d9924994ac9bdfbf14eeb7a1 rdf:first sg:person.014433460651.03
52 rdf:rest N184974f43b75469f9ea972d4d5338882
53 N87ac4733980f4d478b17d93ff57a0afc schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nb5edc6a2ee1947ffaed12aa6f3b5ee83 schema:name readcube_id
56 schema:value dc682a877fb1a3d54353495480f3df8be6a94582d1540f985993dd887ad41149
57 rdf:type schema:PropertyValue
58 Nbd349458f9be4bcc9dd564b0c63a657a schema:volumeNumber 348
59 rdf:type schema:PublicationVolume
60 Nbef3a8a2fc744418bdaf06ab5d753057 schema:name doi
61 schema:value 10.1007/s00208-010-0478-6
62 rdf:type schema:PropertyValue
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1120885 schema:issn 0025-5831
70 1432-1807
71 schema:name Mathematische Annalen
72 rdf:type schema:Periodical
73 sg:person.014433460651.03 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
74 schema:familyName Folsom
75 schema:givenName Amanda
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433460651.03
77 rdf:type schema:Person
78 sg:person.0717644044.71 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
79 schema:familyName Masri
80 schema:givenName Riad
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717644044.71
82 rdf:type schema:Person
83 sg:pub.10.1007/978-3-642-80615-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049342383
84 https://doi.org/10.1007/978-3-642-80615-5
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01388809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039451295
87 https://doi.org/10.1007/bf01388809
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01393993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049841809
90 https://doi.org/10.1007/bf01393993
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01458081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477938
93 https://doi.org/10.1007/bf01458081
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00208-005-0706-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052775798
96 https://doi.org/10.1007/s00208-005-0706-7
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00222-005-0468-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050953835
99 https://doi.org/10.1007/s00222-005-0468-6
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1017/s0027763000015932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038401870
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1090/coll/053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098702807
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/gsm/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740272
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/gsm/053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710048
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1090/s0002-9939-07-08883-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003767168
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/s0002-9947-1938-1501943-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047924428
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/s0002-9947-1939-0000410-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027829321
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/121132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397582
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/1968973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674378
118 rdf:type schema:CreativeWork
119 https://doi.org/10.4310/ajm.2001.v5.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456336
120 rdf:type schema:CreativeWork
121 https://doi.org/10.4310/cdm.2008.v2008.n1.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072458298
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
124 schema:name Department of Mathematics, University of Wisconsin, 53706, Madison, WI, USA
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...