Ontology type: schema:ScholarlyArticle
2008-12
AUTHORSLuigi Ambrosio, Andrea Colesanti, Elena Villa
ABSTRACTWe find conditions ensuring the existence of the outer Minkowski content for d-dimensional closed sets in , in connection with regularity properties of their boundaries. Moreover, we provide a class of sets (including all sufficiently regular sets) stable under finite unions for which the outer Minkowski content exists. It follows, in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positive reach belong to this class. More... »
PAGES727-748
http://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z
DOIhttp://dx.doi.org/10.1007/s00208-008-0254-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015478528
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, p.za dei Cavalieri 7, 56126, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Ambrosio",
"givenName": "Luigi",
"id": "sg:person.012621721115.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Florence",
"id": "https://www.grid.ac/institutes/grid.8404.8",
"name": [
"Dipartimento di Matematica, Universit\u00e0 degli Studi di Firenze, viale Morgagni 67/A, 50134, Firenze, Italy"
],
"type": "Organization"
},
"familyName": "Colesanti",
"givenName": "Andrea",
"id": "sg:person.013061233452.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013061233452.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Milan",
"id": "https://www.grid.ac/institutes/grid.4708.b",
"name": [
"Dipartimento di Matematica, Universit\u00e0 degli Studi di Milano, via Saldini 50, 20133, Milan, Italy"
],
"type": "Organization"
},
"familyName": "Villa",
"givenName": "Elena",
"id": "sg:person.013141352235.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013141352235.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1090/s0002-9947-1959-0110078-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007367944"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1008706529",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-58106-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008706529",
"https://doi.org/10.1007/978-3-642-58106-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-58106-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008706529",
"https://doi.org/10.1007/978-3-642-58106-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00209-003-0597-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019358212",
"https://doi.org/10.1007/s00209-003-0597-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02413869",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024962690",
"https://doi.org/10.1007/bf02413869"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02413869",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024962690",
"https://doi.org/10.1007/bf02413869"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s007910100056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032246716",
"https://doi.org/10.1007/s007910100056"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01195026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035859429",
"https://doi.org/10.1007/bf01195026"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01195026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035859429",
"https://doi.org/10.1007/bf01195026"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1037302846",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1037302846",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01039289",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042321741",
"https://doi.org/10.1007/bf01039289"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002290050015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052940248",
"https://doi.org/10.1007/s002290050015"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/s002557930000005x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062055147"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/s002557930000005x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062055147"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5566/ias.v26.p23-36",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072988737"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-12",
"datePublishedReg": "2008-12-01",
"description": "We find conditions ensuring the existence of the outer Minkowski content for d-dimensional closed sets in , in connection with regularity properties of their boundaries. Moreover, we provide a class of sets (including all sufficiently regular sets) stable under finite unions for which the outer Minkowski content exists. It follows, in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positive reach belong to this class.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00208-008-0254-z",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1120885",
"issn": [
"0025-5831",
"1432-1807"
],
"name": "Mathematische Annalen",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "342"
}
],
"name": "Outer Minkowski content for some classes of closed sets",
"pagination": "727-748",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"49bf9a792e4601bbf6f4c09129d37204b12f074e6870f16480423d48322aee24"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00208-008-0254-z"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015478528"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00208-008-0254-z",
"https://app.dimensions.ai/details/publication/pub.1015478528"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T14:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13096_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00208-008-0254-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
21 PREDICATES
39 URIs
19 LITERALS
7 BLANK NODES