Outer Minkowski content for some classes of closed sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-12

AUTHORS

Luigi Ambrosio, Andrea Colesanti, Elena Villa

ABSTRACT

We find conditions ensuring the existence of the outer Minkowski content for d-dimensional closed sets in , in connection with regularity properties of their boundaries. Moreover, we provide a class of sets (including all sufficiently regular sets) stable under finite unions for which the outer Minkowski content exists. It follows, in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positive reach belong to this class. More... »

PAGES

727-748

References to SciGraph publications

  • 2000-02. Hessian measures of semi-convex functions and applications to support measures of convex bodies in MANUSCRIPTA MATHEMATICA
  • 1993-03. Mutational equations in metric spaces in SET-VALUED ANALYSIS
  • 1992. Introduction to Shape Optimization, Shape Sensitivity Analysis in NONE
  • 2004-01. A local Steiner–type formula for general closed sets and applications in MATHEMATISCHE ZEITSCHRIFT
  • 1978-12. Curvature measures of convex bodies in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • 2001-11. Set-valued maps for image segmentation in COMPUTING AND VISUALIZATION IN SCIENCE
  • 1986-06. Integral and current representation of Federer's curvature measures in ARCHIV DER MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z

    DOI

    http://dx.doi.org/10.1007/s00208-008-0254-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015478528


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Scuola Normale Superiore di Pisa", 
              "id": "https://www.grid.ac/institutes/grid.6093.c", 
              "name": [
                "Scuola Normale Superiore, p.za dei Cavalieri 7, 56126, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ambrosio", 
            "givenName": "Luigi", 
            "id": "sg:person.012621721115.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Florence", 
              "id": "https://www.grid.ac/institutes/grid.8404.8", 
              "name": [
                "Dipartimento di Matematica, Universit\u00e0 degli Studi di Firenze, viale Morgagni 67/A, 50134, Firenze, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Colesanti", 
            "givenName": "Andrea", 
            "id": "sg:person.013061233452.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013061233452.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Milan", 
              "id": "https://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Dipartimento di Matematica, Universit\u00e0 degli Studi di Milano, via Saldini 50, 20133, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Villa", 
            "givenName": "Elena", 
            "id": "sg:person.013141352235.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013141352235.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1090/s0002-9947-1959-0110078-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007367944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1008706529", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-58106-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008706529", 
              "https://doi.org/10.1007/978-3-642-58106-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-58106-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008706529", 
              "https://doi.org/10.1007/978-3-642-58106-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-003-0597-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019358212", 
              "https://doi.org/10.1007/s00209-003-0597-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02413869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024962690", 
              "https://doi.org/10.1007/bf02413869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02413869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024962690", 
              "https://doi.org/10.1007/bf02413869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s007910100056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032246716", 
              "https://doi.org/10.1007/s007910100056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01195026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035859429", 
              "https://doi.org/10.1007/bf01195026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01195026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035859429", 
              "https://doi.org/10.1007/bf01195026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1037302846", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1037302846", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01039289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042321741", 
              "https://doi.org/10.1007/bf01039289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002290050015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052940248", 
              "https://doi.org/10.1007/s002290050015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s002557930000005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062055147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s002557930000005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062055147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5566/ias.v26.p23-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072988737"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-12", 
        "datePublishedReg": "2008-12-01", 
        "description": "We find conditions ensuring the existence of the outer Minkowski content for d-dimensional closed sets in , in connection with regularity properties of their boundaries. Moreover, we provide a class of sets (including all sufficiently regular sets) stable under finite unions for which the outer Minkowski content exists. It follows, in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positive reach belong to this class.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00208-008-0254-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1120885", 
            "issn": [
              "0025-5831", 
              "1432-1807"
            ], 
            "name": "Mathematische Annalen", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "342"
          }
        ], 
        "name": "Outer Minkowski content for some classes of closed sets", 
        "pagination": "727-748", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "49bf9a792e4601bbf6f4c09129d37204b12f074e6870f16480423d48322aee24"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00208-008-0254-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015478528"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00208-008-0254-z", 
          "https://app.dimensions.ai/details/publication/pub.1015478528"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13096_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00208-008-0254-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-008-0254-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00208-008-0254-z schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Ne31f8e2880954c60872ba7e4b3300d5e
    4 schema:citation sg:pub.10.1007/978-3-642-58106-9
    5 sg:pub.10.1007/bf01039289
    6 sg:pub.10.1007/bf01195026
    7 sg:pub.10.1007/bf02413869
    8 sg:pub.10.1007/s00209-003-0597-9
    9 sg:pub.10.1007/s002290050015
    10 sg:pub.10.1007/s007910100056
    11 https://app.dimensions.ai/details/publication/pub.1008706529
    12 https://app.dimensions.ai/details/publication/pub.1037302846
    13 https://doi.org/10.1090/s0002-9947-1959-0110078-1
    14 https://doi.org/10.1112/s002557930000005x
    15 https://doi.org/10.5566/ias.v26.p23-36
    16 schema:datePublished 2008-12
    17 schema:datePublishedReg 2008-12-01
    18 schema:description We find conditions ensuring the existence of the outer Minkowski content for d-dimensional closed sets in , in connection with regularity properties of their boundaries. Moreover, we provide a class of sets (including all sufficiently regular sets) stable under finite unions for which the outer Minkowski content exists. It follows, in particular, that finite unions of sets with Lipschitz boundary and a type of sets with positive reach belong to this class.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N0910275cf71d4abcaf19e7d67b8bb741
    23 Ndc1a5b5a0b3a42f4a77177cbba8bb8c9
    24 sg:journal.1120885
    25 schema:name Outer Minkowski content for some classes of closed sets
    26 schema:pagination 727-748
    27 schema:productId N6e9d527720c149cba1d612bf88a3b4da
    28 N988ddcfd236d42a688e4df3a37b347ff
    29 Neb3ba275021e4e35b8acaf64f446545e
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015478528
    31 https://doi.org/10.1007/s00208-008-0254-z
    32 schema:sdDatePublished 2019-04-11T14:31
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N41c8e5a8de994f7087f2e67b0ca5483e
    35 schema:url http://link.springer.com/10.1007%2Fs00208-008-0254-z
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N0910275cf71d4abcaf19e7d67b8bb741 schema:issueNumber 4
    40 rdf:type schema:PublicationIssue
    41 N41c8e5a8de994f7087f2e67b0ca5483e schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N4218de7ed18348babeb411ed63ca2c6a rdf:first sg:person.013061233452.52
    44 rdf:rest N85970b92bbc84b04bfbd5eb77684aab5
    45 N6e9d527720c149cba1d612bf88a3b4da schema:name readcube_id
    46 schema:value 49bf9a792e4601bbf6f4c09129d37204b12f074e6870f16480423d48322aee24
    47 rdf:type schema:PropertyValue
    48 N85970b92bbc84b04bfbd5eb77684aab5 rdf:first sg:person.013141352235.04
    49 rdf:rest rdf:nil
    50 N988ddcfd236d42a688e4df3a37b347ff schema:name doi
    51 schema:value 10.1007/s00208-008-0254-z
    52 rdf:type schema:PropertyValue
    53 Ndc1a5b5a0b3a42f4a77177cbba8bb8c9 schema:volumeNumber 342
    54 rdf:type schema:PublicationVolume
    55 Ne31f8e2880954c60872ba7e4b3300d5e rdf:first sg:person.012621721115.68
    56 rdf:rest N4218de7ed18348babeb411ed63ca2c6a
    57 Neb3ba275021e4e35b8acaf64f446545e schema:name dimensions_id
    58 schema:value pub.1015478528
    59 rdf:type schema:PropertyValue
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Numerical and Computational Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1120885 schema:issn 0025-5831
    67 1432-1807
    68 schema:name Mathematische Annalen
    69 rdf:type schema:Periodical
    70 sg:person.012621721115.68 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
    71 schema:familyName Ambrosio
    72 schema:givenName Luigi
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
    74 rdf:type schema:Person
    75 sg:person.013061233452.52 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
    76 schema:familyName Colesanti
    77 schema:givenName Andrea
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013061233452.52
    79 rdf:type schema:Person
    80 sg:person.013141352235.04 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
    81 schema:familyName Villa
    82 schema:givenName Elena
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013141352235.04
    84 rdf:type schema:Person
    85 sg:pub.10.1007/978-3-642-58106-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008706529
    86 https://doi.org/10.1007/978-3-642-58106-9
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf01039289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042321741
    89 https://doi.org/10.1007/bf01039289
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01195026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035859429
    92 https://doi.org/10.1007/bf01195026
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf02413869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024962690
    95 https://doi.org/10.1007/bf02413869
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s00209-003-0597-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019358212
    98 https://doi.org/10.1007/s00209-003-0597-9
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s002290050015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052940248
    101 https://doi.org/10.1007/s002290050015
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s007910100056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032246716
    104 https://doi.org/10.1007/s007910100056
    105 rdf:type schema:CreativeWork
    106 https://app.dimensions.ai/details/publication/pub.1008706529 schema:CreativeWork
    107 https://app.dimensions.ai/details/publication/pub.1037302846 schema:CreativeWork
    108 https://doi.org/10.1090/s0002-9947-1959-0110078-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367944
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1112/s002557930000005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062055147
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.5566/ias.v26.p23-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072988737
    113 rdf:type schema:CreativeWork
    114 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
    115 schema:name Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, 20133, Milan, Italy
    116 rdf:type schema:Organization
    117 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
    118 schema:name Scuola Normale Superiore, p.za dei Cavalieri 7, 56126, Pisa, Italy
    119 rdf:type schema:Organization
    120 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
    121 schema:name Dipartimento di Matematica, Università degli Studi di Firenze, viale Morgagni 67/A, 50134, Firenze, Italy
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...