The Euler characteristic of local systems on the moduli of genus 3 hyperelliptic curves View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-04-02

AUTHORS

Gilberto Bini, Gerard van der Geer

ABSTRACT

.For a partition λ={λ1≥λ2≥λ3≥0} of non-negative integers, we calculate the Euler characteristic of the local system on the moduli space of genus 3 hyperelliptic curves using a suitable stratification. For some λ of low degree, we make a guess for the motivic Euler characteristic of using counting curves over finite fields. More... »

PAGES

367-379

References to SciGraph publications

  • 1971. Formes modulaires et représentations e-adiques in SÉMINAIRE BOURBAKI VOL. 1968/69 EXPOSÉS 347-363
  • 1993. Die Hauptgleichungen vom fünften Grade in VORLESUNGEN ÜBER DAS IKOSAEDER
  • 1993. Eisensteinkohomologie und die Konstruktion gemischter Motive in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00208-005-0629-3

    DOI

    http://dx.doi.org/10.1007/s00208-005-0629-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001014795


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento di Matematica, Universit\u00e0 degli Studi di Milano, Via C. Saldini 50, 20133, Milano, Italia", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Dipartimento di Matematica, Universit\u00e0 degli Studi di Milano, Via C. Saldini 50, 20133, Milano, Italia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bini", 
            "givenName": "Gilberto", 
            "id": "sg:person.011311244747.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311244747.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korteweg-de Vries Instituut, University of Amsterdam, Plantage Muidergracht 24, 1018, Amsterdam, TV, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "Korteweg-de Vries Instituut, University of Amsterdam, Plantage Muidergracht 24, 1018, Amsterdam, TV, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geer", 
            "givenName": "Gerard van der", 
            "id": "sg:person.016500376121.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500376121.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0090305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018160239", 
              "https://doi.org/10.1007/bfb0090305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8594-2_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089521778", 
              "https://doi.org/10.1007/978-3-0348-8594-2_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0058810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018918854", 
              "https://doi.org/10.1007/bfb0058810"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-04-02", 
        "datePublishedReg": "2005-04-02", 
        "description": "Abstract.For a partition \u03bb={\u03bb1\u2265\u03bb2\u2265\u03bb3\u22650} of non-negative integers, we calculate the Euler characteristic of the local system  on the moduli space of genus 3 hyperelliptic curves using a suitable stratification. For some \u03bb of low degree, we make a guess for the motivic Euler characteristic of  using counting curves over finite fields.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00208-005-0629-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1120885", 
            "issn": [
              "0025-5831", 
              "1432-1807"
            ], 
            "name": "Mathematische Annalen", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "332"
          }
        ], 
        "keywords": [
          "genus 3 hyperelliptic curves", 
          "hyperelliptic curves", 
          "local systems", 
          "finite field", 
          "system", 
          "partition", 
          "Euler characteristic", 
          "space", 
          "guess", 
          "non-negative integers", 
          "integers", 
          "characteristics", 
          "suitable stratification", 
          "field", 
          "curves", 
          "stratification", 
          "low degree", 
          "degree", 
          "moduli space", 
          "modulus", 
          "motivic Euler characteristic"
        ], 
        "name": "The Euler characteristic of local systems on the moduli of genus 3 hyperelliptic curves", 
        "pagination": "367-379", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001014795"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00208-005-0629-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00208-005-0629-3", 
          "https://app.dimensions.ai/details/publication/pub.1001014795"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_404.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00208-005-0629-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00208-005-0629-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00208-005-0629-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00208-005-0629-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00208-005-0629-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      22 PREDICATES      49 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00208-005-0629-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd005cd06cba646679b0cae779b6afcde
    4 schema:citation sg:pub.10.1007/978-3-0348-8594-2_8
    5 sg:pub.10.1007/bfb0058810
    6 sg:pub.10.1007/bfb0090305
    7 schema:datePublished 2005-04-02
    8 schema:datePublishedReg 2005-04-02
    9 schema:description Abstract.For a partition λ={λ1≥λ2≥λ3≥0} of non-negative integers, we calculate the Euler characteristic of the local system on the moduli space of genus 3 hyperelliptic curves using a suitable stratification. For some λ of low degree, we make a guess for the motivic Euler characteristic of using counting curves over finite fields.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N449b79abd1d5419089069afb14073e12
    14 N6c33803909b9490cb54e938251035893
    15 sg:journal.1120885
    16 schema:keywords Euler characteristic
    17 characteristics
    18 curves
    19 degree
    20 field
    21 finite field
    22 genus 3 hyperelliptic curves
    23 guess
    24 hyperelliptic curves
    25 integers
    26 local systems
    27 low degree
    28 moduli space
    29 modulus
    30 motivic Euler characteristic
    31 non-negative integers
    32 partition
    33 space
    34 stratification
    35 suitable stratification
    36 system
    37 schema:name The Euler characteristic of local systems on the moduli of genus 3 hyperelliptic curves
    38 schema:pagination 367-379
    39 schema:productId N51f2b37165e74fc3b68374d3839ef80d
    40 N921b29b4207746029b3c9b8331b9a059
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001014795
    42 https://doi.org/10.1007/s00208-005-0629-3
    43 schema:sdDatePublished 2021-12-01T19:17
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N3a902c02bf2448209a27b4f9cdf48fe7
    46 schema:url https://doi.org/10.1007/s00208-005-0629-3
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N3a902c02bf2448209a27b4f9cdf48fe7 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N449b79abd1d5419089069afb14073e12 schema:volumeNumber 332
    53 rdf:type schema:PublicationVolume
    54 N51f2b37165e74fc3b68374d3839ef80d schema:name doi
    55 schema:value 10.1007/s00208-005-0629-3
    56 rdf:type schema:PropertyValue
    57 N6c33803909b9490cb54e938251035893 schema:issueNumber 2
    58 rdf:type schema:PublicationIssue
    59 N8d5b6789324843959130c52c4d1ad141 rdf:first sg:person.016500376121.41
    60 rdf:rest rdf:nil
    61 N921b29b4207746029b3c9b8331b9a059 schema:name dimensions_id
    62 schema:value pub.1001014795
    63 rdf:type schema:PropertyValue
    64 Nd005cd06cba646679b0cae779b6afcde rdf:first sg:person.011311244747.26
    65 rdf:rest N8d5b6789324843959130c52c4d1ad141
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1120885 schema:issn 0025-5831
    73 1432-1807
    74 schema:name Mathematische Annalen
    75 schema:publisher Springer Nature
    76 rdf:type schema:Periodical
    77 sg:person.011311244747.26 schema:affiliation grid-institutes:grid.4708.b
    78 schema:familyName Bini
    79 schema:givenName Gilberto
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311244747.26
    81 rdf:type schema:Person
    82 sg:person.016500376121.41 schema:affiliation grid-institutes:grid.7177.6
    83 schema:familyName Geer
    84 schema:givenName Gerard van der
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500376121.41
    86 rdf:type schema:Person
    87 sg:pub.10.1007/978-3-0348-8594-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089521778
    88 https://doi.org/10.1007/978-3-0348-8594-2_8
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bfb0058810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018918854
    91 https://doi.org/10.1007/bfb0058810
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bfb0090305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018160239
    94 https://doi.org/10.1007/bfb0090305
    95 rdf:type schema:CreativeWork
    96 grid-institutes:grid.4708.b schema:alternateName Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133, Milano, Italia
    97 schema:name Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133, Milano, Italia
    98 rdf:type schema:Organization
    99 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, University of Amsterdam, Plantage Muidergracht 24, 1018, Amsterdam, TV, The Netherlands
    100 schema:name Korteweg-de Vries Instituut, University of Amsterdam, Plantage Muidergracht 24, 1018, Amsterdam, TV, The Netherlands
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...