Propagation of Singularities¶for Solutions of Nonlinear First Order¶Partial Differential Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-03

AUTHORS

Paolo Albano, Piermarco Cannarsa

ABSTRACT

Few results are available in the mathematical literature for studying the structure of the singular set of a weak solution u of F(x,u,Du)=0. This paper provides new techniques to analyse such a set when u is semiconcave and F is a nonlinear convex function with respect to p. The main objective achieved here is a classification of the singularities of u that propagate along Lipschitz arcs. Such a propagation phenomenon is also described by means of a generalized characteristics inclusion. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002050100176

DOI

http://dx.doi.org/10.1007/s002050100176

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005697121


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica\u00b6Universit\u00e0 di Bologna\u00b6Piazza di Porta S. Donato 5\u00b640127  Bologna, Italy\u00b6e-mail: albano@dm.unibo.it, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albano", 
        "givenName": "Paolo", 
        "id": "sg:person.014423462135.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423462135.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica\u00b6Universit\u00e0 di Roma \u201cTor Vergata\u201d\u00b6Via della Ricerca Scientifica\u00b600133 Roma, Italy\u00b6e-mail: cannarsa@mat.uniroma2.it, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-03", 
    "datePublishedReg": "2002-03-01", 
    "description": "Few results are available in the mathematical literature for studying the structure of the singular set of a weak solution u of F(x,u,Du)=0. This paper provides new techniques to analyse such a set when u is semiconcave and F is a nonlinear convex function with respect to p. The main objective achieved here is a classification of the singularities of u that propagate along Lipschitz arcs. Such a propagation phenomenon is also described by means of a generalized characteristics inclusion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002050100176", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047617", 
        "issn": [
          "0003-9527", 
          "1432-0673"
        ], 
        "name": "Archive for Rational Mechanics and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "162"
      }
    ], 
    "name": "Propagation of Singularities\u00b6for Solutions of Nonlinear First Order\u00b6Partial Differential Equations", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b24ab6da7ea859f22e8f3131b79a34247755cffd8d7023fd8caa958aabf1afe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002050100176"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005697121"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002050100176", 
      "https://app.dimensions.ai/details/publication/pub.1005697121"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002050100176"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002050100176'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002050100176'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002050100176'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002050100176'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002050100176 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N596bf3319c604c85a84f73ab27401a88
4 schema:datePublished 2002-03
5 schema:datePublishedReg 2002-03-01
6 schema:description Few results are available in the mathematical literature for studying the structure of the singular set of a weak solution u of F(x,u,Du)=0. This paper provides new techniques to analyse such a set when u is semiconcave and F is a nonlinear convex function with respect to p. The main objective achieved here is a classification of the singularities of u that propagate along Lipschitz arcs. Such a propagation phenomenon is also described by means of a generalized characteristics inclusion.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ned8bb89050714efaabe43fe32e0d0d79
11 Nfd39defb03f249f88c413a08492bf74d
12 sg:journal.1047617
13 schema:name Propagation of Singularities¶for Solutions of Nonlinear First Order¶Partial Differential Equations
14 schema:pagination 1-23
15 schema:productId N9fd6895d09284b5587df4973bd4893aa
16 Nad9293f8ab93496d9c406b89a8d45cf8
17 Ncb402c3183de4a298a0286797e5c679c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005697121
19 https://doi.org/10.1007/s002050100176
20 schema:sdDatePublished 2019-04-10T18:20
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nf664e724f9994183a33bef78c2eb58e4
23 schema:url http://link.springer.com/10.1007%2Fs002050100176
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N05b4bf4d2b7e48d583890a05ac1db126 rdf:first sg:person.014257010655.09
28 rdf:rest rdf:nil
29 N596bf3319c604c85a84f73ab27401a88 rdf:first sg:person.014423462135.10
30 rdf:rest N05b4bf4d2b7e48d583890a05ac1db126
31 N9fd6895d09284b5587df4973bd4893aa schema:name readcube_id
32 schema:value 1b24ab6da7ea859f22e8f3131b79a34247755cffd8d7023fd8caa958aabf1afe
33 rdf:type schema:PropertyValue
34 Nad9293f8ab93496d9c406b89a8d45cf8 schema:name doi
35 schema:value 10.1007/s002050100176
36 rdf:type schema:PropertyValue
37 Ncb402c3183de4a298a0286797e5c679c schema:name dimensions_id
38 schema:value pub.1005697121
39 rdf:type schema:PropertyValue
40 Nd96ce30829484274aa6f52d772014d4c schema:name Dipartimento di Matematica¶Università di Roma “Tor Vergata”¶Via della Ricerca Scientifica¶00133 Roma, Italy¶e-mail: cannarsa@mat.uniroma2.it, IT
41 rdf:type schema:Organization
42 Ne6ec363b616d420db9532acce48ace17 schema:name Dipartimento di Matematica¶Università di Bologna¶Piazza di Porta S. Donato 5¶40127 Bologna, Italy¶e-mail: albano@dm.unibo.it, IT
43 rdf:type schema:Organization
44 Ned8bb89050714efaabe43fe32e0d0d79 schema:volumeNumber 162
45 rdf:type schema:PublicationVolume
46 Nf664e724f9994183a33bef78c2eb58e4 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nfd39defb03f249f88c413a08492bf74d schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1047617 schema:issn 0003-9527
57 1432-0673
58 schema:name Archive for Rational Mechanics and Analysis
59 rdf:type schema:Periodical
60 sg:person.014257010655.09 schema:affiliation Nd96ce30829484274aa6f52d772014d4c
61 schema:familyName Cannarsa
62 schema:givenName Piermarco
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
64 rdf:type schema:Person
65 sg:person.014423462135.10 schema:affiliation Ne6ec363b616d420db9532acce48ace17
66 schema:familyName Albano
67 schema:givenName Paolo
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423462135.10
69 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...