Asymptotic Stability of Solitons¶for Subcritical Generalized KdV Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

Yvan Martel, Frank Merle

ABSTRACT

We prove in this paper the asymptotic completeness of the family of solitons in the energy space for generalized Korteweg-de Vries equations in the subcritical case (this includes in particular the KdV equation and the modified KdV equation). This result is obtained as a consequence of a rigidity theorem on the flow close to a soliton up to a scaling and a translation, which has its own interest. The proofs use some tools introduced in a previous paper to prove similar results in the case of critical generalized KdV equation. More... »

PAGES

219-254

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002050100138

DOI

http://dx.doi.org/10.1007/s002050100138

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034575776


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 de Cergy\u2013Pontoise\u00b6D\u00e9partement de Math\u00e9matiques\u00b62, av. Adolphe Chauvin\u00b695302 Cergy\u2013Pontoise, France\u00b6e-mail: yvan.martel@math.u-cergy.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martel", 
        "givenName": "Yvan", 
        "id": "sg:person.011243620274.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011243620274.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 de Cergy\u2013Pontoise\u00b6D\u00e9partement de Math\u00e9matiques\u00b62, av. Adolphe Chauvin\u00b695302 Cergy\u2013Pontoise, France\u00b6e-mail: frank.merle@math.u-cergy.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merle", 
        "givenName": "Frank", 
        "id": "sg:person.010043327033.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043327033.51"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-04", 
    "datePublishedReg": "2001-04-01", 
    "description": " We prove in this paper the asymptotic completeness of the family of solitons in the energy space for generalized Korteweg-de Vries equations in the subcritical case (this includes in particular the KdV equation and the modified KdV equation). This result is obtained as a consequence of a rigidity theorem on the flow close to a soliton up to a scaling and a translation, which has its own interest. The proofs use some tools introduced in a previous paper to prove similar results in the case of critical generalized KdV equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002050100138", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047617", 
        "issn": [
          "0003-9527", 
          "1432-0673"
        ], 
        "name": "Archive for Rational Mechanics and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "157"
      }
    ], 
    "name": "Asymptotic Stability of Solitons\u00b6for Subcritical Generalized KdV Equations", 
    "pagination": "219-254", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a4b4a043cb46b3ffcaa8fc65890966823d4b313e4b947ad7a6de97deafd81604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002050100138"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034575776"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002050100138", 
      "https://app.dimensions.ai/details/publication/pub.1034575776"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002050100138"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002050100138'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002050100138'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002050100138'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002050100138'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002050100138 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfac5e982bdf24e10afda81ba9fdeded1
4 schema:datePublished 2001-04
5 schema:datePublishedReg 2001-04-01
6 schema:description We prove in this paper the asymptotic completeness of the family of solitons in the energy space for generalized Korteweg-de Vries equations in the subcritical case (this includes in particular the KdV equation and the modified KdV equation). This result is obtained as a consequence of a rigidity theorem on the flow close to a soliton up to a scaling and a translation, which has its own interest. The proofs use some tools introduced in a previous paper to prove similar results in the case of critical generalized KdV equation.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0c69ab08c1814657a16ee07dcc99bb44
11 Nf66b4683d47e47918f4eb2400a85324c
12 sg:journal.1047617
13 schema:name Asymptotic Stability of Solitons¶for Subcritical Generalized KdV Equations
14 schema:pagination 219-254
15 schema:productId N506fe218eb3b4bd7aa05e115c101cbec
16 N93c8b6b173b04bcdadc91e6e8f958a91
17 Nd2055bff1126418f955503581d638c5c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034575776
19 https://doi.org/10.1007/s002050100138
20 schema:sdDatePublished 2019-04-10T16:43
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ndb590b23179f4636a224a3d6d6541686
23 schema:url http://link.springer.com/10.1007%2Fs002050100138
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0c69ab08c1814657a16ee07dcc99bb44 schema:volumeNumber 157
28 rdf:type schema:PublicationVolume
29 N3c9a636e101b4ae29fb677c3037e5c7f rdf:first sg:person.010043327033.51
30 rdf:rest rdf:nil
31 N506fe218eb3b4bd7aa05e115c101cbec schema:name readcube_id
32 schema:value a4b4a043cb46b3ffcaa8fc65890966823d4b313e4b947ad7a6de97deafd81604
33 rdf:type schema:PropertyValue
34 N93c8b6b173b04bcdadc91e6e8f958a91 schema:name dimensions_id
35 schema:value pub.1034575776
36 rdf:type schema:PropertyValue
37 Nc0b94daaa9164e0ab24c73ce03f0f654 schema:name Université de Cergy–Pontoise¶Département de Mathématiques¶2, av. Adolphe Chauvin¶95302 Cergy–Pontoise, France¶e-mail: frank.merle@math.u-cergy.fr, FR
38 rdf:type schema:Organization
39 Ncc89c0ea1688467f98f91f5693d7cd65 schema:name Université de Cergy–Pontoise¶Département de Mathématiques¶2, av. Adolphe Chauvin¶95302 Cergy–Pontoise, France¶e-mail: yvan.martel@math.u-cergy.fr, FR
40 rdf:type schema:Organization
41 Nd2055bff1126418f955503581d638c5c schema:name doi
42 schema:value 10.1007/s002050100138
43 rdf:type schema:PropertyValue
44 Ndb590b23179f4636a224a3d6d6541686 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nf66b4683d47e47918f4eb2400a85324c schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 Nfac5e982bdf24e10afda81ba9fdeded1 rdf:first sg:person.011243620274.46
49 rdf:rest N3c9a636e101b4ae29fb677c3037e5c7f
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1047617 schema:issn 0003-9527
57 1432-0673
58 schema:name Archive for Rational Mechanics and Analysis
59 rdf:type schema:Periodical
60 sg:person.010043327033.51 schema:affiliation Nc0b94daaa9164e0ab24c73ce03f0f654
61 schema:familyName Merle
62 schema:givenName Frank
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043327033.51
64 rdf:type schema:Person
65 sg:person.011243620274.46 schema:affiliation Ncc89c0ea1688467f98f91f5693d7cd65
66 schema:familyName Martel
67 schema:givenName Yvan
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011243620274.46
69 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...