Ontology type: schema:ScholarlyArticle
1997-12
AUTHORSPiermarco Cannarsa, Andrea Mennucci, Carlo Sinestrari
ABSTRACTThe regularity of the gradient of viscosity solutions of first‐order Hamilton‐Jacobi equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{eqnarray*} \begin{array}{rll} \partial_t u(t,x) + H( t, x, D_x u(t,x))=0,&\quad & t\in\real_+,\es x \in \real^n\,, \\[3pt] u(0,x) = \uzero (x), &\quad & x \in \real^n\,, \end{array} \end{eqnarray*}\end{document} is studied under a strict convexity assumption on H(t,x,⋅). Estimates on the discontinuity set of Du are derived. Such estimates imply that solutions of the above problem are smooth in the complement of a closed ℋn‐rectifiable set. In particular, it follows that Du belongs to the classSBV, i.e., D2u$ is a measure with no Cantor part. More... »
PAGES197-223
http://scigraph.springernature.com/pub.10.1007/s002050050064
DOIhttp://dx.doi.org/10.1007/s002050050064
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1010297606
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica, I\u201000133 Roma, Italy, IT"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "Piermarco",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, Piazza dei Cavalieri, I\u201056126 Pisa, Italy, IT"
],
"type": "Organization"
},
"familyName": "Mennucci",
"givenName": "Andrea",
"id": "sg:person.014337026667.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014337026667.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica, I\u201000133 Roma, Italy, IT"
],
"type": "Organization"
},
"familyName": "Sinestrari",
"givenName": "Carlo",
"id": "sg:person.010746770411.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746770411.97"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4612-0847-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000708399",
"https://doi.org/10.1007/978-1-4612-0847-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0847-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000708399",
"https://doi.org/10.1007/978-1-4612-0847-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00376024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004900812",
"https://doi.org/10.1007/bf00376024"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1020677833",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-62010-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020677833",
"https://doi.org/10.1007/978-3-642-62010-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-62010-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020677833",
"https://doi.org/10.1007/978-3-642-62010-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00052492",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027890988",
"https://doi.org/10.1007/bf00052492"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00052492",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027890988",
"https://doi.org/10.1007/bf00052492"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1983-0690039-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031839902"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-0396(69)90091-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050454127"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02567770",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052475767",
"https://doi.org/10.1007/bf02567770"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02567770",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052475767",
"https://doi.org/10.1007/bf02567770"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0329068",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062844322"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2969/jmsj/04310089",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070931529"
],
"type": "CreativeWork"
}
],
"datePublished": "1997-12",
"datePublishedReg": "1997-12-01",
"description": "The regularity of the gradient of viscosity solutions of first\u2010order Hamilton\u2010Jacobi equations \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{eqnarray*} \\begin{array}{rll} \\partial_t u(t,x) + H( t, x, D_x u(t,x))=0,&\\quad & t\\in\\real_+,\\es x \\in \\real^n\\,, \\\\[3pt] u(0,x) = \\uzero (x), &\\quad & x \\in \\real^n\\,, \\end{array} \\end{eqnarray*}\\end{document} is studied under a strict convexity assumption on H(t,x,\u22c5). Estimates on the discontinuity set of Du are derived. Such estimates imply that solutions of the above problem are smooth in the complement of a closed \u210bn\u2010rectifiable set. In particular, it follows that Du belongs to the classSBV, i.e., D2u$ is a measure with no Cantor part.",
"genre": "research_article",
"id": "sg:pub.10.1007/s002050050064",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1047617",
"issn": [
"0003-9527",
"1432-0673"
],
"name": "Archive for Rational Mechanics and Analysis",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "140"
}
],
"name": "Regularity Results for Solutions of a Class of Hamilton-Jacobi Equations",
"pagination": "197-223",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"310f11f6a8448b91d39f5fd2991e9bc9b5b4c28e2ffa5c5913c810ee1eaba542"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002050050064"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1010297606"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002050050064",
"https://app.dimensions.ai/details/publication/pub.1010297606"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T15:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000510.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs002050050064"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002050050064'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002050050064'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002050050064'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002050050064'
This table displays all metadata directly associated to this object as RDF triples.
112 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES