Bulk Burning Rate in¶Passive–Reactive Diffusion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-08

AUTHORS

Peter Constantin, Alexander Kiselev, Adam Oberman, Leonid Ryzhik

ABSTRACT

We consider a passive scalar that is advected by a prescribed mean zero divergence-free velocity field, diffuses, and reacts according to a KPP-type nonlinear reaction. We introduce a quantity, the bulk burning rate, that makes both mathematical and physical sense in general situations and extends the often ill-defined notion of front speed. We establish rigorous lower bounds for the bulk burning rate that are linear in the amplitude of the advecting velocity for a large class of flows. These “percolating” flows are characterized by the presence of tubes of streamlines connecting distant regions of burned and unburned material and generalize shear flows. The bound contains geometric information on the velocity streamlines and degenerates when these oscillate on scales that are finer than the width of the laminar burning region. We give also examples of very different kind of flows, cellular flows with closed streamlines, and rigorously prove that these can produce only sub-linea enhancement of the bulk burning rate. More... »

PAGES

53-91

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002050000090

DOI

http://dx.doi.org/10.1007/s002050000090

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003964368


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics\u00b6University of Chicago\u00b6Chicago IL 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Constantin", 
        "givenName": "Peter", 
        "id": "sg:person.01360651252.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360651252.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics\u00b6University of Chicago\u00b6Chicago IL 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiselev", 
        "givenName": "Alexander", 
        "id": "sg:person.0734162722.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734162722.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics\u00b6University of Chicago\u00b6Chicago IL 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberman", 
        "givenName": "Adam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics\u00b6University of Chicago\u00b6Chicago IL 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryzhik", 
        "givenName": "Leonid", 
        "id": "sg:person.0621351774.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621351774.12"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-08", 
    "datePublishedReg": "2000-08-01", 
    "description": "We consider a passive scalar that is advected by a prescribed mean zero divergence-free velocity field, diffuses, and reacts according to a KPP-type nonlinear reaction. We introduce a quantity, the bulk burning rate, that makes both mathematical and physical sense in general situations and extends the often ill-defined notion of front speed. We establish rigorous lower bounds for the bulk burning rate that are linear in the amplitude of the advecting velocity for a large class of flows. These \u201cpercolating\u201d flows are characterized by the presence of tubes of streamlines connecting distant regions of burned and unburned material and generalize shear flows. The bound contains geometric information on the velocity streamlines and degenerates when these oscillate on scales that are finer than the width of the laminar burning region. We give also examples of very different kind of flows, cellular flows with closed streamlines, and rigorously prove that these can produce only sub-linea enhancement of the bulk burning rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002050000090", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047617", 
        "issn": [
          "0003-9527", 
          "1432-0673"
        ], 
        "name": "Archive for Rational Mechanics and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "154"
      }
    ], 
    "name": "Bulk Burning Rate in\u00b6Passive\u2013Reactive Diffusion", 
    "pagination": "53-91", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "12e32f2ff257d19420d10228d30d153725c13f2d4576215435c1f97beb644d44"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002050000090"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003964368"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002050000090", 
      "https://app.dimensions.ai/details/publication/pub.1003964368"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002050000090"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002050000090'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002050000090'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002050000090'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002050000090'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002050000090 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N103dfd00ca194078a4cebffa8167574b
4 schema:datePublished 2000-08
5 schema:datePublishedReg 2000-08-01
6 schema:description We consider a passive scalar that is advected by a prescribed mean zero divergence-free velocity field, diffuses, and reacts according to a KPP-type nonlinear reaction. We introduce a quantity, the bulk burning rate, that makes both mathematical and physical sense in general situations and extends the often ill-defined notion of front speed. We establish rigorous lower bounds for the bulk burning rate that are linear in the amplitude of the advecting velocity for a large class of flows. These “percolating” flows are characterized by the presence of tubes of streamlines connecting distant regions of burned and unburned material and generalize shear flows. The bound contains geometric information on the velocity streamlines and degenerates when these oscillate on scales that are finer than the width of the laminar burning region. We give also examples of very different kind of flows, cellular flows with closed streamlines, and rigorously prove that these can produce only sub-linea enhancement of the bulk burning rate.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N102e6b2a0a44498d933b6568137f8f8e
11 N7e35ad7008404c12aa2d49096eb4be1e
12 sg:journal.1047617
13 schema:name Bulk Burning Rate in¶Passive–Reactive Diffusion
14 schema:pagination 53-91
15 schema:productId N05af1984ff9544eeb3b3eaf9137b2e64
16 N9adb81d02a394b17a8069a391d943997
17 Nd35df06fa22b4046a2d7e94a2650585f
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003964368
19 https://doi.org/10.1007/s002050000090
20 schema:sdDatePublished 2019-04-11T00:15
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb73b803052b943bf9aac2f4e28de3bb8
23 schema:url http://link.springer.com/10.1007%2Fs002050000090
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0042289dfddc4f7589a1be1ea07ff00f schema:name Department of Mathematics¶University of Chicago¶Chicago IL 60637, USA
28 rdf:type schema:Organization
29 N05af1984ff9544eeb3b3eaf9137b2e64 schema:name dimensions_id
30 schema:value pub.1003964368
31 rdf:type schema:PropertyValue
32 N0f70bb4013c34344b780a94f5ade19ec schema:affiliation Nf8304a78a2d340bca1ec634168a97ec1
33 schema:familyName Oberman
34 schema:givenName Adam
35 rdf:type schema:Person
36 N102e6b2a0a44498d933b6568137f8f8e schema:volumeNumber 154
37 rdf:type schema:PublicationVolume
38 N103dfd00ca194078a4cebffa8167574b rdf:first sg:person.01360651252.70
39 rdf:rest Nd358ec004cae4f588a093b2d6d5f685f
40 N234490fc5cac4683bb88b7cc68f2ca8c rdf:first sg:person.0621351774.12
41 rdf:rest rdf:nil
42 N43f4521ef2cd419f9d9b0111d74a9fc0 rdf:first N0f70bb4013c34344b780a94f5ade19ec
43 rdf:rest N234490fc5cac4683bb88b7cc68f2ca8c
44 N7e35ad7008404c12aa2d49096eb4be1e schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N9adb81d02a394b17a8069a391d943997 schema:name readcube_id
47 schema:value 12e32f2ff257d19420d10228d30d153725c13f2d4576215435c1f97beb644d44
48 rdf:type schema:PropertyValue
49 Nb73b803052b943bf9aac2f4e28de3bb8 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nd358ec004cae4f588a093b2d6d5f685f rdf:first sg:person.0734162722.28
52 rdf:rest N43f4521ef2cd419f9d9b0111d74a9fc0
53 Nd35df06fa22b4046a2d7e94a2650585f schema:name doi
54 schema:value 10.1007/s002050000090
55 rdf:type schema:PropertyValue
56 Ne1637dcee0994a54b368877b01a6b8c5 schema:name Department of Mathematics¶University of Chicago¶Chicago IL 60637, USA
57 rdf:type schema:Organization
58 Nedfd348dac4a4a199bf35241468fc39c schema:name Department of Mathematics¶University of Chicago¶Chicago IL 60637, USA
59 rdf:type schema:Organization
60 Nf8304a78a2d340bca1ec634168a97ec1 schema:name Department of Mathematics¶University of Chicago¶Chicago IL 60637, USA
61 rdf:type schema:Organization
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1047617 schema:issn 0003-9527
69 1432-0673
70 schema:name Archive for Rational Mechanics and Analysis
71 rdf:type schema:Periodical
72 sg:person.01360651252.70 schema:affiliation Nedfd348dac4a4a199bf35241468fc39c
73 schema:familyName Constantin
74 schema:givenName Peter
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360651252.70
76 rdf:type schema:Person
77 sg:person.0621351774.12 schema:affiliation Ne1637dcee0994a54b368877b01a6b8c5
78 schema:familyName Ryzhik
79 schema:givenName Leonid
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621351774.12
81 rdf:type schema:Person
82 sg:person.0734162722.28 schema:affiliation N0042289dfddc4f7589a1be1ea07ff00f
83 schema:familyName Kiselev
84 schema:givenName Alexander
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734162722.28
86 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...