Building Kohn–Sham Potentials for Ground and Excited States View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-20

AUTHORS

Louis Garrigue

ABSTRACT

We analyze the inverse problem of Density Functional Theory using a regularized variational method. First, we show that given k and a target density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}, there exist potentials having kth bound mixed states which densities are arbitrarily close to ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}. The state can be chosen pure in dimension d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document} and without interactions, and we provide numerical and theoretical evidence consistently leading us to conjecture that the same pure representability result holds for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}, but that the set of pure-state v-representable densities is not dense for d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}. Finally, we present an inversion algorithm taking into account degeneracies, removing the generic blocking behavior of standard ones. More... »

PAGES

949-1003

References to SciGraph publications

  • 2019-10-03. Exact exchange-correlation potentials from ground-state electron densities in NATURE COMMUNICATIONS
  • 2021-06-30. Some Properties of the Potential-to-Ground State Map in Quantum Mechanics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2018-09-13. Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem in MATHEMATICAL PHYSICS, ANALYSIS AND GEOMETRY
  • 2000. SCF algorithms for HF electronic calculations in MATHEMATICAL MODELS AND METHODS FOR AB INITIO QUANTUM CHEMISTRY
  • 1988. Nonlinear Functional Analysis and its Applications, IV: Applications to Mathematical Physics in NONE
  • 1985-02. Density functional approach to quantum lattice systems in JOURNAL OF STATISTICAL PHYSICS
  • 1984-03. The inverse problem in classical statistical mechanics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2018-06-14. The semi-classical limit of large fermionic systems in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 2021-11-08. Ten Years of Glory in the α-Functionalizations of Acetophenones: Progress Through Kornblum Oxidation and C–H Functionalization in TOPICS IN CURRENT CHEMISTRY
  • 2011. Density Functional Theory, An Advanced Course in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00205-022-01804-1

    DOI

    http://dx.doi.org/10.1007/s00205-022-01804-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148809170


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CERMICS, \u00c9cole des ponts ParisTech, 6 and 8 Av. Pascal, 77455, Marne-la-Vall\u00e9e, France", 
              "id": "http://www.grid.ac/institutes/grid.507665.7", 
              "name": [
                "CERMICS, \u00c9cole des ponts ParisTech, 6 and 8 Av. Pascal, 77455, Marne-la-Vall\u00e9e, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garrigue", 
            "givenName": "Louis", 
            "id": "sg:person.014400500230.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400500230.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4612-4566-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053114197", 
              "https://doi.org/10.1007/978-1-4612-4566-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11040-018-9287-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106967345", 
              "https://doi.org/10.1007/s11040-018-9287-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01010474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005312553", 
              "https://doi.org/10.1007/bf01010474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-018-1374-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104609958", 
              "https://doi.org/10.1007/s00526-018-1374-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-57237-1_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013468286", 
              "https://doi.org/10.1007/978-3-642-57237-1_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-14090-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033381689", 
              "https://doi.org/10.1007/978-3-642-14090-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12467-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121473877", 
              "https://doi.org/10.1038/s41467-019-12467-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043102462", 
              "https://doi.org/10.1007/bf01218639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41061-021-00356-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1142424923", 
              "https://doi.org/10.1007/s41061-021-00356-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-021-04140-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139277774", 
              "https://doi.org/10.1007/s00220-021-04140-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-20", 
        "datePublishedReg": "2022-06-20", 
        "description": "We analyze the inverse problem of Density Functional Theory using a regularized variational method. First, we show that given k and a target density \u03c1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\rho $$\\end{document}, there exist potentials having kth bound mixed states which densities are arbitrarily close to \u03c1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\rho $$\\end{document}. The state can be chosen pure in dimension d=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$d=1$$\\end{document} and without interactions, and we provide numerical and theoretical evidence consistently leading us to conjecture that the same pure representability result holds for d=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$d=2$$\\end{document}, but that the set of pure-state v-representable densities is not dense for d=3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$d=3$$\\end{document}. Finally, we present an inversion algorithm taking into account degeneracies, removing the generic blocking behavior of standard ones.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00205-022-01804-1", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7927025", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6623602", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1047617", 
            "issn": [
              "0003-9527", 
              "1432-0673"
            ], 
            "name": "Archive for Rational Mechanics and Analysis", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "245"
          }
        ], 
        "keywords": [
          "inverse problem", 
          "variational method", 
          "mixed state", 
          "representability results", 
          "v-representable densities", 
          "inversion algorithm", 
          "account degeneracy", 
          "Kohn-Sham potential", 
          "density functional theory", 
          "functional theory", 
          "target density", 
          "standard ones", 
          "theoretical evidence", 
          "degeneracy", 
          "problem", 
          "theory", 
          "density", 
          "state", 
          "algorithm", 
          "blocking behavior", 
          "KTH", 
          "dimensions", 
          "set", 
          "one", 
          "excited states", 
          "potential", 
          "interaction", 
          "results", 
          "behavior", 
          "ground", 
          "evidence", 
          "method"
        ], 
        "name": "Building Kohn\u2013Sham Potentials for Ground and Excited States", 
        "pagination": "949-1003", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148809170"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00205-022-01804-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00205-022-01804-1", 
          "https://app.dimensions.ai/details/publication/pub.1148809170"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_952.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00205-022-01804-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01804-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01804-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01804-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01804-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      67 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00205-022-01804-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author Nb8a1b7efdc714cc686af1002ca223d31
    5 schema:citation sg:pub.10.1007/978-1-4612-4566-7
    6 sg:pub.10.1007/978-3-642-14090-7
    7 sg:pub.10.1007/978-3-642-57237-1_2
    8 sg:pub.10.1007/bf01010474
    9 sg:pub.10.1007/bf01218639
    10 sg:pub.10.1007/s00220-021-04140-9
    11 sg:pub.10.1007/s00526-018-1374-2
    12 sg:pub.10.1007/s11040-018-9287-z
    13 sg:pub.10.1007/s41061-021-00356-4
    14 sg:pub.10.1038/s41467-019-12467-0
    15 schema:datePublished 2022-06-20
    16 schema:datePublishedReg 2022-06-20
    17 schema:description We analyze the inverse problem of Density Functional Theory using a regularized variational method. First, we show that given k and a target density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}, there exist potentials having kth bound mixed states which densities are arbitrarily close to ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}. The state can be chosen pure in dimension d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document} and without interactions, and we provide numerical and theoretical evidence consistently leading us to conjecture that the same pure representability result holds for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}, but that the set of pure-state v-representable densities is not dense for d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}. Finally, we present an inversion algorithm taking into account degeneracies, removing the generic blocking behavior of standard ones.
    18 schema:genre article
    19 schema:isAccessibleForFree true
    20 schema:isPartOf Ne5dc744d25dc4dd0bf3619643bd0a546
    21 Nf5941f53a76442b0accf09a333c35453
    22 sg:journal.1047617
    23 schema:keywords KTH
    24 Kohn-Sham potential
    25 account degeneracy
    26 algorithm
    27 behavior
    28 blocking behavior
    29 degeneracy
    30 density
    31 density functional theory
    32 dimensions
    33 evidence
    34 excited states
    35 functional theory
    36 ground
    37 interaction
    38 inverse problem
    39 inversion algorithm
    40 method
    41 mixed state
    42 one
    43 potential
    44 problem
    45 representability results
    46 results
    47 set
    48 standard ones
    49 state
    50 target density
    51 theoretical evidence
    52 theory
    53 v-representable densities
    54 variational method
    55 schema:name Building Kohn–Sham Potentials for Ground and Excited States
    56 schema:pagination 949-1003
    57 schema:productId N0899034e06794367b71f2a37b8ff7a32
    58 Nd9409e38d44f47d792b3e9fe3da36957
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148809170
    60 https://doi.org/10.1007/s00205-022-01804-1
    61 schema:sdDatePublished 2022-12-01T06:44
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Na7372124e86e445eabdf1d5cce735679
    64 schema:url https://doi.org/10.1007/s00205-022-01804-1
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N0899034e06794367b71f2a37b8ff7a32 schema:name doi
    69 schema:value 10.1007/s00205-022-01804-1
    70 rdf:type schema:PropertyValue
    71 Na7372124e86e445eabdf1d5cce735679 schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 Nb8a1b7efdc714cc686af1002ca223d31 rdf:first sg:person.014400500230.35
    74 rdf:rest rdf:nil
    75 Nd9409e38d44f47d792b3e9fe3da36957 schema:name dimensions_id
    76 schema:value pub.1148809170
    77 rdf:type schema:PropertyValue
    78 Ne5dc744d25dc4dd0bf3619643bd0a546 schema:issueNumber 2
    79 rdf:type schema:PublicationIssue
    80 Nf5941f53a76442b0accf09a333c35453 schema:volumeNumber 245
    81 rdf:type schema:PublicationVolume
    82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Mathematical Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Pure Mathematics
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Applied Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:grant.6623602 http://pending.schema.org/fundedItem sg:pub.10.1007/s00205-022-01804-1
    92 rdf:type schema:MonetaryGrant
    93 sg:grant.7927025 http://pending.schema.org/fundedItem sg:pub.10.1007/s00205-022-01804-1
    94 rdf:type schema:MonetaryGrant
    95 sg:journal.1047617 schema:issn 0003-9527
    96 1432-0673
    97 schema:name Archive for Rational Mechanics and Analysis
    98 schema:publisher Springer Nature
    99 rdf:type schema:Periodical
    100 sg:person.014400500230.35 schema:affiliation grid-institutes:grid.507665.7
    101 schema:familyName Garrigue
    102 schema:givenName Louis
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400500230.35
    104 rdf:type schema:Person
    105 sg:pub.10.1007/978-1-4612-4566-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053114197
    106 https://doi.org/10.1007/978-1-4612-4566-7
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-642-14090-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033381689
    109 https://doi.org/10.1007/978-3-642-14090-7
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-3-642-57237-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013468286
    112 https://doi.org/10.1007/978-3-642-57237-1_2
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf01010474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005312553
    115 https://doi.org/10.1007/bf01010474
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf01218639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043102462
    118 https://doi.org/10.1007/bf01218639
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00220-021-04140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139277774
    121 https://doi.org/10.1007/s00220-021-04140-9
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00526-018-1374-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104609958
    124 https://doi.org/10.1007/s00526-018-1374-2
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s11040-018-9287-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106967345
    127 https://doi.org/10.1007/s11040-018-9287-z
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s41061-021-00356-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142424923
    130 https://doi.org/10.1007/s41061-021-00356-4
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/s41467-019-12467-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121473877
    133 https://doi.org/10.1038/s41467-019-12467-0
    134 rdf:type schema:CreativeWork
    135 grid-institutes:grid.507665.7 schema:alternateName CERMICS, École des ponts ParisTech, 6 and 8 Av. Pascal, 77455, Marne-la-Vallée, France
    136 schema:name CERMICS, École des ponts ParisTech, 6 and 8 Av. Pascal, 77455, Marne-la-Vallée, France
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...