Variational Analysis of the J1–J2–J3 Model: A Non-linear Lattice Version of the Aviles–Giga Functional View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-24

AUTHORS

Marco Cicalese, Marwin Forster, Gianluca Orlando

ABSTRACT

We study the variational limit of the frustrated J1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1$$\end{document}–J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}–J3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_3$$\end{document} spin model on the square lattice in the vicinity of the ferromagnet/helimagnet transition point as the lattice spacing vanishes. We carry out the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence analysis of proper scalings of the energy and we characterize the optimal cost of a chirality transition in BV proving that the system is asymptotically driven by a discrete version of a non-linear perturbation of the Aviles–Giga energy functional. More... »

PAGES

1059-1133

References to SciGraph publications

  • 2000-06-01. Singular Perturbation and the Energy of Folds in JOURNAL OF NONLINEAR SCIENCE
  • 2021-08-23. Characterization of Minimizers of Aviles–Giga Functionals in Special Domains in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2021-07-02. The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 2008-01. A general technique to prove upper bounds for singular perturbation problems in JOURNAL D'ANALYSE MATHÉMATIQUE
  • 2007-01-17. Sharp upper bounds for a variational problem with singular perturbation in MATHEMATISCHE ANNALEN
  • 2017. Ginzburg-Landau Vortices in NONE
  • 2018-07-24. Exact Periodic Stripes for Minimizers of a Local/Nonlocal Interaction Functional in General Dimension in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2014-03-21. Formation of Stripes and Slabs Near the Ferromagnetic Transition in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1989. A version of the fundamental theorem for young measures in PDES AND CONTINUUM MODELS OF PHASE TRANSITIONS
  • 2022-01-04. On the structure of weak solutions to scalar conservation laws with finite entropy production in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 2016-10-20. Interfaces, Modulated Phases and Textures in Lattice Systems in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1999-12. Line energies for gradient vector fields in the plane in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 2008-07-17. Variational Analysis of the Asymptotics of the XY Model in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2018-03-05. Topological domain walls in helimagnets in NATURE PHYSICS
  • 2014-06-03. Metastability and Dynamics of Discrete Topological Singularities in Two Dimensions: A Γ-Convergence Approach in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2003-06. Structure of entropy solutions to the eikonal equation in JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY
  • 2020-06-17. Rigidity of a Non-elliptic Differential Inclusion Related to the Aviles–Giga Conjecture in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2016-06-20. Periodic Striped Ground States in Ising Models with Competing Interactions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-01-29. Frustrated Ferromagnetic Spin Chains: A Variational Approach to Chirality Transitions in JOURNAL OF NONLINEAR SCIENCE
  • 2022-06-27. The N-Clock Model: Variational Analysis for Fast and Slow Divergence Rates of N in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2018-01-24. Defects in Nematic Shells: A Γ-Convergence Discrete-to-Continuum Approach in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2007. Vortices in the Magnetic Ginzburg-Landau Model in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00205-022-01800-5

    DOI

    http://dx.doi.org/10.1007/s00205-022-01800-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148945283


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technische Universit\u00e4t M\u00fcnchen, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Technische Universit\u00e4t M\u00fcnchen, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cicalese", 
            "givenName": "Marco", 
            "id": "sg:person.010247514271.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247514271.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technische Universit\u00e4t M\u00fcnchen, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Technische Universit\u00e4t M\u00fcnchen, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Forster", 
            "givenName": "Marwin", 
            "id": "sg:person.011740216401.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740216401.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Politecnico di Bari, Bari, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4466.0", 
              "name": [
                "Politecnico di Bari, Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orlando", 
            "givenName": "Gianluca", 
            "id": "sg:person.013776170661.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776170661.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41567-018-0056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101324940", 
              "https://doi.org/10.1038/s41567-018-0056-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0024945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013526322", 
              "https://doi.org/10.1007/bfb0024945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10097-002-0048-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020968267", 
              "https://doi.org/10.1007/s10097-002-0048-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-016-2665-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002347243", 
              "https://doi.org/10.1007/s00220-016-2665-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00332-015-9230-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021402968", 
              "https://doi.org/10.1007/s00332-015-9230-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003329910014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009997731", 
              "https://doi.org/10.1007/s003329910014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-016-1050-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034029030", 
              "https://doi.org/10.1007/s00205-016-1050-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-018-1285-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105811714", 
              "https://doi.org/10.1007/s00205-018-1285-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4550-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048133822", 
              "https://doi.org/10.1007/978-0-8176-4550-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-008-0146-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015441609", 
              "https://doi.org/10.1007/s00205-008-0146-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00208-006-0070-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044647480", 
              "https://doi.org/10.1007/s00208-006-0070-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-66673-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101165872", 
              "https://doi.org/10.1007/978-3-319-66673-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-014-0757-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044117913", 
              "https://doi.org/10.1007/s00205-014-0757-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-021-01704-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140591759", 
              "https://doi.org/10.1007/s00205-021-01704-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-1923-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030444537", 
              "https://doi.org/10.1007/s00220-014-1923-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11854-008-0024-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005098618", 
              "https://doi.org/10.1007/s11854-008-0024-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s005260050144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037656106", 
              "https://doi.org/10.1007/s005260050144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-021-02137-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1144366899", 
              "https://doi.org/10.1007/s00526-021-02137-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-020-01545-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128559506", 
              "https://doi.org/10.1007/s00205-020-01545-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-017-1215-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100621676", 
              "https://doi.org/10.1007/s00205-017-1215-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-022-01799-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1149013753", 
              "https://doi.org/10.1007/s00205-022-01799-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-021-02016-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139347237", 
              "https://doi.org/10.1007/s00526-021-02016-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-24", 
        "datePublishedReg": "2022-06-24", 
        "description": "We study the variational limit of the frustrated J1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_1$$\\end{document}\u2013J2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2$$\\end{document}\u2013J3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_3$$\\end{document} spin model on the square lattice in the vicinity of the ferromagnet/helimagnet transition point as the lattice spacing vanishes. We carry out the \u0393\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Gamma $$\\end{document}-convergence analysis of proper scalings of the energy and we characterize the optimal cost of a chirality transition in BV proving that the system is asymptotically driven by a discrete version of a non-linear perturbation of the Aviles\u2013Giga energy functional.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00205-022-01800-5", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1047617", 
            "issn": [
              "0003-9527", 
              "1432-0673"
            ], 
            "name": "Archive for Rational Mechanics and Analysis", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "245"
          }
        ], 
        "keywords": [
          "non-linear perturbations", 
          "spin model", 
          "convergence analysis", 
          "J1-J2", 
          "J3 model", 
          "variational analysis", 
          "lattice version", 
          "square lattice", 
          "discrete version", 
          "variational limit", 
          "optimal cost", 
          "proper scaling", 
          "transition point", 
          "chirality transition", 
          "lattice spacing", 
          "functionals", 
          "lattice", 
          "model", 
          "perturbations", 
          "scaling", 
          "version", 
          "energy", 
          "vicinity", 
          "point", 
          "transition", 
          "limit", 
          "system", 
          "spacing", 
          "analysis", 
          "cost", 
          "BV"
        ], 
        "name": "Variational Analysis of the J1\u2013J2\u2013J3 Model: A Non-linear Lattice Version of the Aviles\u2013Giga Functional", 
        "pagination": "1059-1133", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148945283"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00205-022-01800-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00205-022-01800-5", 
          "https://app.dimensions.ai/details/publication/pub.1148945283"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_952.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00205-022-01800-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01800-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01800-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01800-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00205-022-01800-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    193 TRIPLES      21 PREDICATES      77 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00205-022-01800-5 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 schema:author N25d87e8dcdac4a3ea7d9408864178c1a
    4 schema:citation sg:pub.10.1007/978-0-8176-4550-2
    5 sg:pub.10.1007/978-3-319-66673-0
    6 sg:pub.10.1007/bfb0024945
    7 sg:pub.10.1007/s00205-008-0146-0
    8 sg:pub.10.1007/s00205-014-0757-6
    9 sg:pub.10.1007/s00205-016-1050-7
    10 sg:pub.10.1007/s00205-017-1215-z
    11 sg:pub.10.1007/s00205-018-1285-6
    12 sg:pub.10.1007/s00205-020-01545-z
    13 sg:pub.10.1007/s00205-021-01704-w
    14 sg:pub.10.1007/s00205-022-01799-9
    15 sg:pub.10.1007/s00208-006-0070-2
    16 sg:pub.10.1007/s00220-014-1923-2
    17 sg:pub.10.1007/s00220-016-2665-0
    18 sg:pub.10.1007/s00332-015-9230-4
    19 sg:pub.10.1007/s003329910014
    20 sg:pub.10.1007/s00526-021-02016-3
    21 sg:pub.10.1007/s00526-021-02137-9
    22 sg:pub.10.1007/s005260050144
    23 sg:pub.10.1007/s10097-002-0048-7
    24 sg:pub.10.1007/s11854-008-0024-6
    25 sg:pub.10.1038/s41567-018-0056-5
    26 schema:datePublished 2022-06-24
    27 schema:datePublishedReg 2022-06-24
    28 schema:description We study the variational limit of the frustrated J1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1$$\end{document}–J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}–J3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_3$$\end{document} spin model on the square lattice in the vicinity of the ferromagnet/helimagnet transition point as the lattice spacing vanishes. We carry out the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence analysis of proper scalings of the energy and we characterize the optimal cost of a chirality transition in BV proving that the system is asymptotically driven by a discrete version of a non-linear perturbation of the Aviles–Giga energy functional.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N87f30936037b47fbabdce81cbee30c1f
    32 Ne352ba347a9e4bb3a9776d2ce68202ef
    33 sg:journal.1047617
    34 schema:keywords BV
    35 J1-J2
    36 J3 model
    37 analysis
    38 chirality transition
    39 convergence analysis
    40 cost
    41 discrete version
    42 energy
    43 functionals
    44 lattice
    45 lattice spacing
    46 lattice version
    47 limit
    48 model
    49 non-linear perturbations
    50 optimal cost
    51 perturbations
    52 point
    53 proper scaling
    54 scaling
    55 spacing
    56 spin model
    57 square lattice
    58 system
    59 transition
    60 transition point
    61 variational analysis
    62 variational limit
    63 version
    64 vicinity
    65 schema:name Variational Analysis of the J1–J2–J3 Model: A Non-linear Lattice Version of the Aviles–Giga Functional
    66 schema:pagination 1059-1133
    67 schema:productId Nb00a58b1f53443e28f6f8f27d56cbb8f
    68 Nede702be182345aa8812e0ae6e534f8a
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148945283
    70 https://doi.org/10.1007/s00205-022-01800-5
    71 schema:sdDatePublished 2022-12-01T06:44
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N658f7171c55a4a2f8ab0304e8a68fa50
    74 schema:url https://doi.org/10.1007/s00205-022-01800-5
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N25d87e8dcdac4a3ea7d9408864178c1a rdf:first sg:person.010247514271.43
    79 rdf:rest N417a83cfd95d423e8b4a0ef65df5329b
    80 N417a83cfd95d423e8b4a0ef65df5329b rdf:first sg:person.011740216401.79
    81 rdf:rest N7fcadfc595ca4590abe4cdfc97b5d7ef
    82 N658f7171c55a4a2f8ab0304e8a68fa50 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N7fcadfc595ca4590abe4cdfc97b5d7ef rdf:first sg:person.013776170661.33
    85 rdf:rest rdf:nil
    86 N87f30936037b47fbabdce81cbee30c1f schema:issueNumber 2
    87 rdf:type schema:PublicationIssue
    88 Nb00a58b1f53443e28f6f8f27d56cbb8f schema:name doi
    89 schema:value 10.1007/s00205-022-01800-5
    90 rdf:type schema:PropertyValue
    91 Ne352ba347a9e4bb3a9776d2ce68202ef schema:volumeNumber 245
    92 rdf:type schema:PublicationVolume
    93 Nede702be182345aa8812e0ae6e534f8a schema:name dimensions_id
    94 schema:value pub.1148945283
    95 rdf:type schema:PropertyValue
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Mathematical Physics
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1047617 schema:issn 0003-9527
    103 1432-0673
    104 schema:name Archive for Rational Mechanics and Analysis
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.010247514271.43 schema:affiliation grid-institutes:grid.6936.a
    108 schema:familyName Cicalese
    109 schema:givenName Marco
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247514271.43
    111 rdf:type schema:Person
    112 sg:person.011740216401.79 schema:affiliation grid-institutes:grid.6936.a
    113 schema:familyName Forster
    114 schema:givenName Marwin
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740216401.79
    116 rdf:type schema:Person
    117 sg:person.013776170661.33 schema:affiliation grid-institutes:grid.4466.0
    118 schema:familyName Orlando
    119 schema:givenName Gianluca
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776170661.33
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-0-8176-4550-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048133822
    123 https://doi.org/10.1007/978-0-8176-4550-2
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-319-66673-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101165872
    126 https://doi.org/10.1007/978-3-319-66673-0
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bfb0024945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013526322
    129 https://doi.org/10.1007/bfb0024945
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00205-008-0146-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015441609
    132 https://doi.org/10.1007/s00205-008-0146-0
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00205-014-0757-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044117913
    135 https://doi.org/10.1007/s00205-014-0757-6
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00205-016-1050-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034029030
    138 https://doi.org/10.1007/s00205-016-1050-7
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00205-017-1215-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100621676
    141 https://doi.org/10.1007/s00205-017-1215-z
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00205-018-1285-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105811714
    144 https://doi.org/10.1007/s00205-018-1285-6
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00205-020-01545-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1128559506
    147 https://doi.org/10.1007/s00205-020-01545-z
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00205-021-01704-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1140591759
    150 https://doi.org/10.1007/s00205-021-01704-w
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s00205-022-01799-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149013753
    153 https://doi.org/10.1007/s00205-022-01799-9
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s00208-006-0070-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044647480
    156 https://doi.org/10.1007/s00208-006-0070-2
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00220-014-1923-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030444537
    159 https://doi.org/10.1007/s00220-014-1923-2
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00220-016-2665-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002347243
    162 https://doi.org/10.1007/s00220-016-2665-0
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00332-015-9230-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021402968
    165 https://doi.org/10.1007/s00332-015-9230-4
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s003329910014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009997731
    168 https://doi.org/10.1007/s003329910014
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00526-021-02016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139347237
    171 https://doi.org/10.1007/s00526-021-02016-3
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00526-021-02137-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144366899
    174 https://doi.org/10.1007/s00526-021-02137-9
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s005260050144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037656106
    177 https://doi.org/10.1007/s005260050144
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10097-002-0048-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020968267
    180 https://doi.org/10.1007/s10097-002-0048-7
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s11854-008-0024-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005098618
    183 https://doi.org/10.1007/s11854-008-0024-6
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/s41567-018-0056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101324940
    186 https://doi.org/10.1038/s41567-018-0056-5
    187 rdf:type schema:CreativeWork
    188 grid-institutes:grid.4466.0 schema:alternateName Politecnico di Bari, Bari, Italy
    189 schema:name Politecnico di Bari, Bari, Italy
    190 rdf:type schema:Organization
    191 grid-institutes:grid.6936.a schema:alternateName Technische Universität München, Munich, Germany
    192 schema:name Technische Universität München, Munich, Germany
    193 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...