Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-05

AUTHORS

Hai-Liang Li, Yuexun Wang, Zhouping Xin

ABSTRACT

The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990; Kazhikhov in Sibirsk Mat Zh 23:60–64, 1982; Kazhikhov et al. in Prikl Mat Meh 41:282–291, 1977; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342, 1979, J Math Kyoto Univ 20:67–104, 1980, Commun Math Phys 89:445–464, 1983). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in L2-norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275, 2004; Cho and Kim in J Differ Equ 228:377–411, 2006, Manuscr Math 120:91–129, 2006; Choe and Kim in J Differ Equ 190:504–523 2003), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585, 2012). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240, 1998). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time. More... »

PAGES

557-590

References to SciGraph publications

  • 2000-09. Global existence in critical spaces for compressible Navier-Stokes equations in INVENTIONES MATHEMATICAE
  • 2001-11. On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations in JOURNAL OF MATHEMATICAL FLUID MECHANICS
  • 1959-01. On the uniqueness of compressible fluid motions in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1995-03. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2010-06. A Priori Estimates for the Free-Boundary 3D Compressible Euler Equations in Physical Vacuum in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1983-12. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2018-03. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier–Stokes System with Vacuum and Large Oscillations in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2006-05. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities in MANUSCRIPTA MATHEMATICA
  • 2001-01. On Spherically Symmetric Solutions¶of the Compressible Isentropic Navier–Stokes Equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-11. Well-Posedness in Smooth Function Spaces for the Moving-Boundary Three-Dimensional Compressible Euler Equations in Physical Vacuum in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2013-07. On Blowup of Classical Solutions to the Compressible Navier-Stokes Equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-02. Non-Formation of Vacuum States for Compressible Navier–Stokes Equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00205-018-1328-z

    DOI

    http://dx.doi.org/10.1007/s00205-018-1328-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107728545


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Capital Normal University", 
              "id": "https://www.grid.ac/institutes/grid.253663.7", 
              "name": [
                "School of Mathematics and CIT, Capital Normal University, 100048, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Hai-Liang", 
            "id": "sg:person.012243334713.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243334713.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Norwegian University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.5947.f", 
              "name": [
                "Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yuexun", 
            "id": "sg:person.013175004520.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013175004520.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chinese University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.10784.3a", 
              "name": [
                "The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xin", 
            "givenName": "Zhouping", 
            "id": "sg:person.010442451027.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442451027.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1090/s0002-9947-1987-0896014-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000575706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.21382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001462327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matpur.2003.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002893698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0396(03)00015-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003320039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0396(03)00015-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003320039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00229-006-0637-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005326456", 
              "https://doi.org/10.1007/s00229-006-0637-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-012-0536-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012204072", 
              "https://doi.org/10.1007/s00205-012-0536-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00390346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014440885", 
              "https://doi.org/10.1007/bf00390346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00390346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014440885", 
              "https://doi.org/10.1007/bf00390346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.21517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017766840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.19910711208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026309077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026375722", 
              "https://doi.org/10.1007/bf01214738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026375722", 
              "https://doi.org/10.1007/bf01214738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00284180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027049435", 
              "https://doi.org/10.1007/bf00284180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1028-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027555887", 
              "https://doi.org/10.1007/s00220-010-1028-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1028-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027555887", 
              "https://doi.org/10.1007/s00220-010-1028-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002220000078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030664159", 
              "https://doi.org/10.1007/s002220000078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1610-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035559121", 
              "https://doi.org/10.1007/s00220-012-1610-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jde.2006.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037617268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(77)90011-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038391711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8928(77)90011-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038391711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00005543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043089525", 
              "https://doi.org/10.1007/pl00005543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200000322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050354655", 
              "https://doi.org/10.1007/s002200000322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmaa.2005.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050773787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0312(199803)51:3<229::aid-cpa1>3.0.co;2-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052601397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00000976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053459656", 
              "https://doi.org/10.1007/pl00000976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4767369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058063631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0151043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062840925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/110836663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062865009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219891606000847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063010481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3792/pjaa.55.337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071430446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250522322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083509660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.1586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083660538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-017-1188-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092500562", 
              "https://doi.org/10.1007/s00205-017-1188-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "The well-posedness of classical solutions with finite energy to the compressible Navier\u2013Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990; Kazhikhov in Sibirsk Mat Zh 23:60\u201364, 1982; Kazhikhov et al. in Prikl Mat Meh 41:282\u2013291, 1977; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337\u2013342, 1979, J Math Kyoto Univ 20:67\u2013104, 1980, Commun Math Phys 89:445\u2013464, 1983). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in L2-norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243\u2013275, 2004; Cho and Kim in J Differ Equ 228:377\u2013411, 2006, Manuscr Math 120:91\u2013129, 2006; Choe and Kim in J Differ Equ 190:504\u2013523 2003), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549\u2013585, 2012). However, it was shown that any classical solutions to the compressible Navier\u2013Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229\u2013240, 1998). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier\u2013Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier\u2013Stokes equations in the presence of a vacuum at far fields even locally in time.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00205-018-1328-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7432567", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7428554", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5062826", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4640296", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1047617", 
            "issn": [
              "0003-9527", 
              "1432-0673"
            ], 
            "name": "Archive for Rational Mechanics and Analysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "232"
          }
        ], 
        "name": "Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier\u2013Stokes Equations", 
        "pagination": "557-590", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a858c183e2728f4d61396080b557f18c3161dabe0ff2c28d415f9636a9b5d59c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00205-018-1328-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107728545"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00205-018-1328-z", 
          "https://app.dimensions.ai/details/publication/pub.1107728545"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00205-018-1328-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00205-018-1328-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00205-018-1328-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00205-018-1328-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00205-018-1328-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    188 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00205-018-1328-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2fe035df1a754d43b5bee3645fdab4c6
    4 schema:citation sg:pub.10.1007/bf00284180
    5 sg:pub.10.1007/bf00390346
    6 sg:pub.10.1007/bf01214738
    7 sg:pub.10.1007/pl00000976
    8 sg:pub.10.1007/pl00005543
    9 sg:pub.10.1007/s00205-012-0536-1
    10 sg:pub.10.1007/s00205-017-1188-y
    11 sg:pub.10.1007/s00220-010-1028-5
    12 sg:pub.10.1007/s00220-012-1610-0
    13 sg:pub.10.1007/s002200000322
    14 sg:pub.10.1007/s002220000078
    15 sg:pub.10.1007/s00229-006-0637-y
    16 https://doi.org/10.1002/(sici)1097-0312(199803)51:3<229::aid-cpa1>3.0.co;2-c
    17 https://doi.org/10.1002/cpa.21382
    18 https://doi.org/10.1002/cpa.21517
    19 https://doi.org/10.1002/zamm.19910711208
    20 https://doi.org/10.1016/0021-8928(77)90011-9
    21 https://doi.org/10.1016/j.jde.2006.05.001
    22 https://doi.org/10.1016/j.jmaa.2005.08.005
    23 https://doi.org/10.1016/j.matpur.2003.11.004
    24 https://doi.org/10.1016/s0022-0396(03)00015-9
    25 https://doi.org/10.1063/1.4767369
    26 https://doi.org/10.1090/s0002-9947-1987-0896014-6
    27 https://doi.org/10.1137/0151043
    28 https://doi.org/10.1137/110836663
    29 https://doi.org/10.1142/s0219891606000847
    30 https://doi.org/10.1215/kjm/1250522322
    31 https://doi.org/10.24033/bsmf.1586
    32 https://doi.org/10.3792/pjaa.55.337
    33 schema:datePublished 2019-05
    34 schema:datePublishedReg 2019-05-01
    35 schema:description The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990; Kazhikhov in Sibirsk Mat Zh 23:60–64, 1982; Kazhikhov et al. in Prikl Mat Meh 41:282–291, 1977; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342, 1979, J Math Kyoto Univ 20:67–104, 1980, Commun Math Phys 89:445–464, 1983). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in L2-norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275, 2004; Cho and Kim in J Differ Equ 228:377–411, 2006, Manuscr Math 120:91–129, 2006; Choe and Kim in J Differ Equ 190:504–523 2003), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585, 2012). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240, 1998). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N83f7bbfb34434b3f8156750b3576bddd
    40 N8d2eef2f4ddd45c4af2bc498af888085
    41 sg:journal.1047617
    42 schema:name Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations
    43 schema:pagination 557-590
    44 schema:productId N21837a6ae26f4b568812e0d07b02509f
    45 N63beb3715d754c148eb5c12cb7cc5ad4
    46 N8b1d42c7066d41b6aa52d43c00162c94
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107728545
    48 https://doi.org/10.1007/s00205-018-1328-z
    49 schema:sdDatePublished 2019-04-11T12:36
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N9391dd8215ce41efb782cea2fe54cdae
    52 schema:url https://link.springer.com/10.1007%2Fs00205-018-1328-z
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N08b7494bfbc74b33a16b236976dbe52e rdf:first sg:person.013175004520.40
    57 rdf:rest Ne4bd0090ae924b3899c758fef8999be1
    58 N21837a6ae26f4b568812e0d07b02509f schema:name dimensions_id
    59 schema:value pub.1107728545
    60 rdf:type schema:PropertyValue
    61 N2fe035df1a754d43b5bee3645fdab4c6 rdf:first sg:person.012243334713.41
    62 rdf:rest N08b7494bfbc74b33a16b236976dbe52e
    63 N63beb3715d754c148eb5c12cb7cc5ad4 schema:name readcube_id
    64 schema:value a858c183e2728f4d61396080b557f18c3161dabe0ff2c28d415f9636a9b5d59c
    65 rdf:type schema:PropertyValue
    66 N83f7bbfb34434b3f8156750b3576bddd schema:volumeNumber 232
    67 rdf:type schema:PublicationVolume
    68 N8b1d42c7066d41b6aa52d43c00162c94 schema:name doi
    69 schema:value 10.1007/s00205-018-1328-z
    70 rdf:type schema:PropertyValue
    71 N8d2eef2f4ddd45c4af2bc498af888085 schema:issueNumber 2
    72 rdf:type schema:PublicationIssue
    73 N9391dd8215ce41efb782cea2fe54cdae schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Ne4bd0090ae924b3899c758fef8999be1 rdf:first sg:person.010442451027.12
    76 rdf:rest rdf:nil
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:grant.4640296 http://pending.schema.org/fundedItem sg:pub.10.1007/s00205-018-1328-z
    84 rdf:type schema:MonetaryGrant
    85 sg:grant.5062826 http://pending.schema.org/fundedItem sg:pub.10.1007/s00205-018-1328-z
    86 rdf:type schema:MonetaryGrant
    87 sg:grant.7428554 http://pending.schema.org/fundedItem sg:pub.10.1007/s00205-018-1328-z
    88 rdf:type schema:MonetaryGrant
    89 sg:grant.7432567 http://pending.schema.org/fundedItem sg:pub.10.1007/s00205-018-1328-z
    90 rdf:type schema:MonetaryGrant
    91 sg:journal.1047617 schema:issn 0003-9527
    92 1432-0673
    93 schema:name Archive for Rational Mechanics and Analysis
    94 rdf:type schema:Periodical
    95 sg:person.010442451027.12 schema:affiliation https://www.grid.ac/institutes/grid.10784.3a
    96 schema:familyName Xin
    97 schema:givenName Zhouping
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442451027.12
    99 rdf:type schema:Person
    100 sg:person.012243334713.41 schema:affiliation https://www.grid.ac/institutes/grid.253663.7
    101 schema:familyName Li
    102 schema:givenName Hai-Liang
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012243334713.41
    104 rdf:type schema:Person
    105 sg:person.013175004520.40 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
    106 schema:familyName Wang
    107 schema:givenName Yuexun
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013175004520.40
    109 rdf:type schema:Person
    110 sg:pub.10.1007/bf00284180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027049435
    111 https://doi.org/10.1007/bf00284180
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf00390346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014440885
    114 https://doi.org/10.1007/bf00390346
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01214738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026375722
    117 https://doi.org/10.1007/bf01214738
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/pl00000976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053459656
    120 https://doi.org/10.1007/pl00000976
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/pl00005543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043089525
    123 https://doi.org/10.1007/pl00005543
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00205-012-0536-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012204072
    126 https://doi.org/10.1007/s00205-012-0536-1
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00205-017-1188-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092500562
    129 https://doi.org/10.1007/s00205-017-1188-y
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00220-010-1028-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027555887
    132 https://doi.org/10.1007/s00220-010-1028-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00220-012-1610-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035559121
    135 https://doi.org/10.1007/s00220-012-1610-0
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s002200000322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050354655
    138 https://doi.org/10.1007/s002200000322
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s002220000078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030664159
    141 https://doi.org/10.1007/s002220000078
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00229-006-0637-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005326456
    144 https://doi.org/10.1007/s00229-006-0637-y
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1002/(sici)1097-0312(199803)51:3<229::aid-cpa1>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601397
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1002/cpa.21382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001462327
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1002/cpa.21517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017766840
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1002/zamm.19910711208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026309077
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/0021-8928(77)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038391711
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.jde.2006.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037617268
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.jmaa.2005.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050773787
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.matpur.2003.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002893698
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/s0022-0396(03)00015-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003320039
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1063/1.4767369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058063631
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1090/s0002-9947-1987-0896014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000575706
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1137/0151043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840925
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1137/110836663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865009
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1142/s0219891606000847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063010481
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1215/kjm/1250522322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083509660
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.24033/bsmf.1586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660538
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.3792/pjaa.55.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071430446
    179 rdf:type schema:CreativeWork
    180 https://www.grid.ac/institutes/grid.10784.3a schema:alternateName Chinese University of Hong Kong
    181 schema:name The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.253663.7 schema:alternateName Capital Normal University
    184 schema:name School of Mathematics and CIT, Capital Normal University, 100048, Beijing, People’s Republic of China
    185 rdf:type schema:Organization
    186 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
    187 schema:name Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
    188 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...