Quasiconformal Frames View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-06

AUTHORS

Juha Heinonen, Pekka Pankka, Kai Rajala

ABSTRACT

We consider n-tuples of differential 1-forms in the Euclidean n-space that satisfy a quasiconformality condition and an asymptotic closedness condition. We show that renormalized sequences of such tuples have subsequences converging to differentials of quasiregular maps. We then use these maps to show that the tuples carry topological information.

PAGES

839-866

References to SciGraph publications

  • 1957-03. Extremal length and functional completion in ACTA MATHEMATICA
  • 1993-03. Integral estimates for null Lagrangians in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00205-009-0257-2

    DOI

    http://dx.doi.org/10.1007/s00205-009-0257-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035244389


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Heinonen", 
            "givenName": "Juha", 
            "id": "sg:person.01047660170.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047660170.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Department of Mathematics and Statistics, University of Helsinki, P. O.Box 68, 00014, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pankka", 
            "givenName": "Pekka", 
            "id": "sg:person.01252167767.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P. O.Box 35, 40014, Jyv\u00e4skyl\u00e4, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rajala", 
            "givenName": "Kai", 
            "id": "sg:person.015130314153.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130314153.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/cpa.10048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003222798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00411477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004504903", 
              "https://doi.org/10.1007/bf00411477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02404474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034482477", 
              "https://doi.org/10.1007/bf02404474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-02-11412-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5186/aasfm.1983.0806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072648323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7146/math.scand.a-11534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073613342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7146/math.scand.a-12564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073614369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400882588-021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086540640"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-06", 
        "datePublishedReg": "2010-06-01", 
        "description": "We consider n-tuples of differential 1-forms in the Euclidean n-space that satisfy a quasiconformality condition and an asymptotic closedness condition. We show that renormalized sequences of such tuples have subsequences converging to differentials of quasiregular maps. We then use these maps to show that the tuples carry topological information.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00205-009-0257-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1047617", 
            "issn": [
              "0003-9527", 
              "1432-0673"
            ], 
            "name": "Archive for Rational Mechanics and Analysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "196"
          }
        ], 
        "name": "Quasiconformal Frames", 
        "pagination": "839-866", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a7e345adf1ccf442689b8047c0e428b5d5ac8ee7d643473191bbd7b0f41af4cb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00205-009-0257-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035244389"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00205-009-0257-2", 
          "https://app.dimensions.ai/details/publication/pub.1035244389"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13096_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00205-009-0257-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00205-009-0257-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00205-009-0257-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00205-009-0257-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00205-009-0257-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00205-009-0257-2 schema:about anzsrc-for:11
    2 anzsrc-for:1117
    3 schema:author N310b2b7b5c24496c9c1cecf9b1429328
    4 schema:citation sg:pub.10.1007/bf00411477
    5 sg:pub.10.1007/bf02404474
    6 https://doi.org/10.1002/cpa.10048
    7 https://doi.org/10.1215/s0012-7094-02-11412-4
    8 https://doi.org/10.1515/9781400882588-021
    9 https://doi.org/10.5186/aasfm.1983.0806
    10 https://doi.org/10.7146/math.scand.a-11534
    11 https://doi.org/10.7146/math.scand.a-12564
    12 schema:datePublished 2010-06
    13 schema:datePublishedReg 2010-06-01
    14 schema:description We consider n-tuples of differential 1-forms in the Euclidean n-space that satisfy a quasiconformality condition and an asymptotic closedness condition. We show that renormalized sequences of such tuples have subsequences converging to differentials of quasiregular maps. We then use these maps to show that the tuples carry topological information.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N774a4a8eeea2439f8d2d61fcca720156
    19 Ncac919980cd844a1be48ba0fcc071909
    20 sg:journal.1047617
    21 schema:name Quasiconformal Frames
    22 schema:pagination 839-866
    23 schema:productId N0c164058f398479d9354cce168990ae8
    24 N42516bb154f44555b7811f44a9ab101a
    25 Nc2eb98b5ad88403f96c58c45c4663727
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035244389
    27 https://doi.org/10.1007/s00205-009-0257-2
    28 schema:sdDatePublished 2019-04-11T14:31
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N66104db3a7ef4150a7f041a0eeb2598a
    31 schema:url http://link.springer.com/10.1007%2Fs00205-009-0257-2
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N0c164058f398479d9354cce168990ae8 schema:name readcube_id
    36 schema:value a7e345adf1ccf442689b8047c0e428b5d5ac8ee7d643473191bbd7b0f41af4cb
    37 rdf:type schema:PropertyValue
    38 N310b2b7b5c24496c9c1cecf9b1429328 rdf:first sg:person.01047660170.05
    39 rdf:rest N5f1bb68a71754764942db39b4c69e6f4
    40 N42516bb154f44555b7811f44a9ab101a schema:name doi
    41 schema:value 10.1007/s00205-009-0257-2
    42 rdf:type schema:PropertyValue
    43 N5f1bb68a71754764942db39b4c69e6f4 rdf:first sg:person.01252167767.43
    44 rdf:rest Ne83d180a5de04f658386537394a59fa3
    45 N66104db3a7ef4150a7f041a0eeb2598a schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N774a4a8eeea2439f8d2d61fcca720156 schema:volumeNumber 196
    48 rdf:type schema:PublicationVolume
    49 Nc2eb98b5ad88403f96c58c45c4663727 schema:name dimensions_id
    50 schema:value pub.1035244389
    51 rdf:type schema:PropertyValue
    52 Ncac919980cd844a1be48ba0fcc071909 schema:issueNumber 3
    53 rdf:type schema:PublicationIssue
    54 Ne83d180a5de04f658386537394a59fa3 rdf:first sg:person.015130314153.11
    55 rdf:rest rdf:nil
    56 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Medical and Health Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Public Health and Health Services
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1047617 schema:issn 0003-9527
    63 1432-0673
    64 schema:name Archive for Rational Mechanics and Analysis
    65 rdf:type schema:Periodical
    66 sg:person.01047660170.05 schema:familyName Heinonen
    67 schema:givenName Juha
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047660170.05
    69 rdf:type schema:Person
    70 sg:person.01252167767.43 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    71 schema:familyName Pankka
    72 schema:givenName Pekka
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43
    74 rdf:type schema:Person
    75 sg:person.015130314153.11 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    76 schema:familyName Rajala
    77 schema:givenName Kai
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130314153.11
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf00411477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004504903
    81 https://doi.org/10.1007/bf00411477
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf02404474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034482477
    84 https://doi.org/10.1007/bf02404474
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1002/cpa.10048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003222798
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1215/s0012-7094-02-11412-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415287
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1515/9781400882588-021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086540640
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.5186/aasfm.1983.0806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072648323
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.7146/math.scand.a-11534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073613342
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.7146/math.scand.a-12564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614369
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
    99 schema:name Department of Mathematics and Statistics, University of Helsinki, P. O.Box 68, 00014, Helsinki, Finland
    100 rdf:type schema:Organization
    101 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
    102 schema:name Department of Mathematics and Statistics, University of Jyväskylä, P. O.Box 35, 40014, Jyväskylä, Finland
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...