Ontology type: schema:ScholarlyArticle Open Access: True
2009-11
AUTHORSLuigi Ambrosio, Alessio Figalli
ABSTRACTWe study Brenier’s variational models for incompressible Euler equations. These models give rise to a relaxation of the Arnold distance in the space of measure-preserving maps and, more generally, measure-preserving plans. We analyze the properties of the relaxed distance, we show a close link between the Lagrangian and the Eulerian model, and we derive necessary and sufficient optimality conditions for minimizers. These conditions take into account a modified Lagrangian induced by the pressure field. Moreover, adapting some ideas of Shnirelman, we show that, even for non-deterministic final conditions, generalized flows can be approximated in energy by flows associated to measure-preserving maps. More... »
PAGES421-462
http://scigraph.springernature.com/pub.10.1007/s00205-008-0189-2
DOIhttp://dx.doi.org/10.1007/s00205-008-0189-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005632696
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, Pisa, Tuscany, Italy"
],
"type": "Organization"
},
"familyName": "Ambrosio",
"givenName": "Luigi",
"id": "sg:person.012621721115.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laurent Schwartz Center for Mathematics",
"id": "https://www.grid.ac/institutes/grid.463843.e",
"name": [
"Centre de Math\u00e9matiques Laurent Schwartz - Ecole Polytechnique, 91128, Palaiseau, France"
],
"type": "Organization"
},
"familyName": "Figalli",
"givenName": "Alessio",
"id": "sg:person.014274533202.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274533202.64"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://app.dimensions.ai/details/publication/pub.1006545122",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0087685",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006545122",
"https://doi.org/10.1007/bfb0087685"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0087685",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006545122",
"https://doi.org/10.1007/bfb0087685"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00375139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006786301",
"https://doi.org/10.1007/bf00375139"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03605300008821529",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012287112"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-007-0123-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013331853",
"https://doi.org/10.1007/s00526-007-0123-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-007-0123-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013331853",
"https://doi.org/10.1007/s00526-007-0123-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00229-006-0003-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014153633",
"https://doi.org/10.1007/s00229-006-0003-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00229-006-0003-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014153633",
"https://doi.org/10.1007/s00229-006-0003-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002110050002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016132384",
"https://doi.org/10.1007/s002110050002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002050050044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018009316",
"https://doi.org/10.1007/s002050050044"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160440402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032992596"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.3160440402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032992596"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-004-0367-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036546922",
"https://doi.org/10.1007/s00222-004-0367-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-004-0367-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036546922",
"https://doi.org/10.1007/s00222-004-0367-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0894-0347-1989-0969419-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046512744"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s000390050093",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047283375",
"https://doi.org/10.1007/s000390050093"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s005260100144",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047501641",
"https://doi.org/10.1007/s005260100144"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01896409",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052279434",
"https://doi.org/10.1007/bf01896409"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01896409",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052279434",
"https://doi.org/10.1007/bf01896409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1097-0312(199904)52:4<411::aid-cpa1>3.0.co;2-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053221236"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1512/iumj.2008.57.3163",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067513721"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1970699",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069676014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4007/annals.2009.169.903",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071867138"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/jems/74",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072318307"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5565/publmat_49205_09",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072982727"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5802/aif.233",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073138109"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/gsm/058",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098710084"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-11",
"datePublishedReg": "2009-11-01",
"description": "We study Brenier\u2019s variational models for incompressible Euler equations. These models give rise to a relaxation of the Arnold distance in the space of measure-preserving maps and, more generally, measure-preserving plans. We analyze the properties of the relaxed distance, we show a close link between the Lagrangian and the Eulerian model, and we derive necessary and sufficient optimality conditions for minimizers. These conditions take into account a modified Lagrangian induced by the pressure field. Moreover, adapting some ideas of Shnirelman, we show that, even for non-deterministic final conditions, generalized flows can be approximated in energy by flows associated to measure-preserving maps.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00205-008-0189-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1047617",
"issn": [
"0003-9527",
"1432-0673"
],
"name": "Archive for Rational Mechanics and Analysis",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "194"
}
],
"name": "Geodesics in the Space of Measure-Preserving Maps and Plans",
"pagination": "421-462",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1ad67b28d0db3bf13f61878b4571d913256dbcbf433f7a310def10b4b1c6ebd6"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00205-008-0189-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005632696"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00205-008-0189-2",
"https://app.dimensions.ai/details/publication/pub.1005632696"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T14:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00205-008-0189-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00205-008-0189-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00205-008-0189-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00205-008-0189-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00205-008-0189-2'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
21 PREDICATES
49 URIs
19 LITERALS
7 BLANK NODES