Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Nitish Kumar Mahato, Anukriti Sharma, Yogendra Singh, Rup Lal

ABSTRACT

Metagenomic surveys across microbial mat (~ 55 °C) samples of high-altitude (1760 m above sea level) Himalayan geothermal springs have revealed specialized community enriched with niche-specific functions. In this study, we have performed metagenomic sequence-based analyses to get insights into taxonomic composition and functional potential of hyperthermophiles in water (~ 95 °C) and sediment samples (78-98 °C). Community analyses revealed predominance of thermophilic bacterial and archeal genera dwelling in water in contrast to microbial mats (55 °C), namely Methylophilus, Methyloversatilis, Emticicia, Caulobacter, Thermus, Enhydrobacter and Pyrobaculum. Sediment samples having surface temperature (~ 78 °C) were colonized by Pyrobaculum and Chloroflexus while genus Massilia was found to be inhabited in high-temperature sediments (~ 98 °C). Functional analyses of metagenomic sequences revealed genetic enrichment of genes such as type IV secretion system, flagellar assembly and two-component system in contrast to mats. Furthermore, inter-sample comparison of enriched microbial diversity among water, sediment and microbial mats revealed habitat-specific clustering of the samples within same environment highlighting the role of temperature dynamics in modulating community structure across different habitats in same niche. However, function-based analysis demonstrated site-specific clustering among sediment, microbial mat and water samples. Furthermore, a novel thermophilic genotype of the genus Emticicia (designated as strain MM) was reconstructed from metagenome data. This is a correlative study between three major habitats present in geothermal spring environment, i.e., water, sediment and microbial mats revealing greater phylogenetic and functional dispersion emphasizing changing habitat-specific dynamics with temperature. More... »

PAGES

377-388

References to SciGraph publications

  • 2008-12. The RAST Server: Rapid Annotations using Subsystems Technology in BMC GENOMICS
  • 2014-04. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park in THE ISME JOURNAL
  • 2011-12. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw in NATURE
  • 2016-12. Draft genome sequence of Lampropedia cohaerens strain CT6T isolated from arsenic rich microbial mats of a Himalayan hot water spring in STANDARDS IN GENOMIC SCIENCES
  • 2014-06. Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments in THE ISME JOURNAL
  • 2015-12. Thermus parvatiensis RLT sp. nov., Isolated from a Hot Water Spring, Located Atop the Himalayan Ranges at Manikaran, India in INDIAN JOURNAL OF MICROBIOLOGY
  • 2011-12. Interactive metagenomic visualization in a Web browser in BMC BIOINFORMATICS
  • 2016-07. (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans in SCIENTIFIC REPORTS
  • 2009-01. Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet in EXTREMOPHILES
  • 2011-09. Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China in EXTREMOPHILES
  • 2008-04. Functional metagenomic profiling of nine biomes in NATURE
  • 2014-06. Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs in ANNALS OF MICROBIOLOGY
  • 2015-10. MetaPhlAn2 for enhanced metagenomic taxonomic profiling in NATURE METHODS
  • Journal

    TITLE

    Archives of Microbiology

    ISSUE

    3

    VOLUME

    201

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6

    DOI

    http://dx.doi.org/10.1007/s00203-018-01616-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111655906

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30683956


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Zoology, University of Delhi, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mahato", 
            "givenName": "Nitish Kumar", 
            "id": "sg:person.01324112270.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324112270.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Zoology, University of Delhi, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharma", 
            "givenName": "Anukriti", 
            "id": "sg:person.0656101302.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656101302.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Zoology, University of Delhi, Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Yogendra", 
            "id": "sg:person.01125644534.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125644534.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Zoology, University of Delhi, Delhi, India", 
                "PhiXgen Pvt. Ltd, Gurugram, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lal", 
            "givenName": "Rup", 
            "id": "sg:person.0707377520.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707377520.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/nar/gkq747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003548827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00792-008-0205-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006223854", 
              "https://doi.org/10.1007/s00792-008-0205-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00792-008-0205-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006223854", 
              "https://doi.org/10.1007/s00792-008-0205-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009049768", 
              "https://doi.org/10.1038/nature10576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.2006.3545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009660818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011847764", 
              "https://doi.org/10.1038/ismej.2013.193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012341961", 
              "https://doi.org/10.1038/ismej.2013.237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013431920", 
              "https://doi.org/10.1186/1471-2164-9-75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.1.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017305614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2013.00148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018399554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2011.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019249960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2011.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019249960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2343/geochemj.1.0011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019958713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020601630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.005967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020786675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.005967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020786675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0409727102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021480522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00792-011-0386-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022085867", 
              "https://doi.org/10.1007/s00792-011-0386-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024778766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025846396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028162909", 
              "https://doi.org/10.1038/nmeth.3589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2015.01166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030127634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0053350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032612267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033847239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/genomea.01020-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033949679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40793-016-0179-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034070331", 
              "https://doi.org/10.1186/s40793-016-0179-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40793-016-0179-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034070331", 
              "https://doi.org/10.1186/s40793-016-0179-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40793-016-0179-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034070331", 
              "https://doi.org/10.1186/s40793-016-0179-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034142177", 
              "https://doi.org/10.1038/srep25527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034239058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/genomea.00703-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034384736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1461-0248.2004.00671.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034551474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.syapm.2010.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034581481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1758-2229.12297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036658810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037780208", 
              "https://doi.org/10.1186/1471-2105-12-385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13213-013-0709-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039031758", 
              "https://doi.org/10.1007/s13213-013-0709-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/genomea.01544-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039423682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.meegid.2014.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042172358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046470836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047805213", 
              "https://doi.org/10.1038/nature06810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00604-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048717857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0103115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051310401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.074492.107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051720574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0062901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051975815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12088-015-0538-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053340029", 
              "https://doi.org/10.1007/s12088-015-0538-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/protein/8.9.905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059981282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/ijs.0.64086-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060387045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/ijsem.0.000853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060388875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/ijsem.0.001051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060389070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082720245", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082959839", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2018.03095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110636381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2018.03095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110636381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2018.03095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110636381"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Metagenomic surveys across microbial mat (~\u200955\u00a0\u00b0C) samples of high-altitude (1760\u00a0m above sea level) Himalayan geothermal springs have revealed specialized community enriched with niche-specific functions. In this study, we have performed metagenomic sequence-based analyses to get insights into taxonomic composition and functional potential of hyperthermophiles in water (~\u200995\u00a0\u00b0C) and sediment samples (78-98\u00a0\u00b0C). Community analyses revealed predominance of thermophilic bacterial and archeal genera dwelling in water in contrast to microbial mats (55\u00a0\u00b0C), namely Methylophilus, Methyloversatilis, Emticicia, Caulobacter, Thermus, Enhydrobacter and Pyrobaculum. Sediment samples having surface temperature (~\u200978\u00a0\u00b0C) were colonized by Pyrobaculum and Chloroflexus while genus Massilia was found to be inhabited in high-temperature sediments (~\u200998\u00a0\u00b0C). Functional analyses of metagenomic sequences revealed genetic enrichment of genes such as type IV secretion system, flagellar assembly and two-component system in contrast to mats. Furthermore, inter-sample comparison of enriched microbial diversity among water, sediment and microbial mats revealed habitat-specific clustering of the samples within same environment highlighting the role of temperature dynamics in modulating community structure across different habitats in same niche. However, function-based analysis demonstrated site-specific clustering among sediment, microbial mat and water samples. Furthermore, a novel thermophilic genotype of the genus Emticicia (designated as strain MM) was reconstructed from metagenome data. This is a correlative study between three major habitats present in geothermal spring environment, i.e., water, sediment and microbial mats revealing greater phylogenetic and functional dispersion emphasizing changing habitat-specific dynamics with temperature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00203-018-01616-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018945", 
            "issn": [
              "0302-8933", 
              "1432-072X"
            ], 
            "name": "Archives of Microbiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "201"
          }
        ], 
        "name": "Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics", 
        "pagination": "377-388", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2abc3bf9ef7d20b3a8444c295c327c3cc5fe915e538b2d68df57b9c04aac2792"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30683956"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410427"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00203-018-01616-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111655906"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00203-018-01616-6", 
          "https://app.dimensions.ai/details/publication/pub.1111655906"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72856_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00203-018-01616-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00203-018-01616-6 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N456c548b705e4114b04e854da687c165
    4 schema:citation sg:pub.10.1007/s00792-008-0205-3
    5 sg:pub.10.1007/s00792-011-0386-z
    6 sg:pub.10.1007/s12088-015-0538-4
    7 sg:pub.10.1007/s13213-013-0709-7
    8 sg:pub.10.1038/ismej.2013.193
    9 sg:pub.10.1038/ismej.2013.237
    10 sg:pub.10.1038/nature06810
    11 sg:pub.10.1038/nature10576
    12 sg:pub.10.1038/nmeth.3589
    13 sg:pub.10.1038/srep25527
    14 sg:pub.10.1186/1471-2105-12-385
    15 sg:pub.10.1186/1471-2164-9-75
    16 sg:pub.10.1186/s40793-016-0179-1
    17 https://app.dimensions.ai/details/publication/pub.1082720245
    18 https://app.dimensions.ai/details/publication/pub.1082959839
    19 https://doi.org/10.1016/j.meegid.2014.08.007
    20 https://doi.org/10.1016/j.syapm.2010.12.002
    21 https://doi.org/10.1038/msb.2011.6
    22 https://doi.org/10.1073/pnas.0409727102
    23 https://doi.org/10.1093/bioinformatics/btl446
    24 https://doi.org/10.1093/bioinformatics/btp324
    25 https://doi.org/10.1093/bioinformatics/btp348
    26 https://doi.org/10.1093/bioinformatics/btu494
    27 https://doi.org/10.1093/nar/28.1.27
    28 https://doi.org/10.1093/nar/gkh340
    29 https://doi.org/10.1093/nar/gkq747
    30 https://doi.org/10.1093/protein/8.9.905
    31 https://doi.org/10.1098/rspb.2006.3545
    32 https://doi.org/10.1099/ijs.0.64086-0
    33 https://doi.org/10.1099/ijsem.0.000853
    34 https://doi.org/10.1099/ijsem.0.001051
    35 https://doi.org/10.1101/gr.074492.107
    36 https://doi.org/10.1111/1758-2229.12297
    37 https://doi.org/10.1111/j.1461-0248.2004.00671.x
    38 https://doi.org/10.1128/genomea.00703-14
    39 https://doi.org/10.1128/genomea.01020-14
    40 https://doi.org/10.1128/genomea.01544-14
    41 https://doi.org/10.1128/jb.00604-12
    42 https://doi.org/10.1371/journal.pcbi.1000352
    43 https://doi.org/10.1371/journal.pcbi.1000465
    44 https://doi.org/10.1371/journal.pone.0053350
    45 https://doi.org/10.1371/journal.pone.0062901
    46 https://doi.org/10.1371/journal.pone.0103115
    47 https://doi.org/10.1534/g3.113.005967
    48 https://doi.org/10.2343/geochemj.1.0011
    49 https://doi.org/10.3389/fmicb.2013.00148
    50 https://doi.org/10.3389/fmicb.2015.01166
    51 https://doi.org/10.3389/fmicb.2018.03095
    52 schema:datePublished 2019-04
    53 schema:datePublishedReg 2019-04-01
    54 schema:description Metagenomic surveys across microbial mat (~ 55 °C) samples of high-altitude (1760 m above sea level) Himalayan geothermal springs have revealed specialized community enriched with niche-specific functions. In this study, we have performed metagenomic sequence-based analyses to get insights into taxonomic composition and functional potential of hyperthermophiles in water (~ 95 °C) and sediment samples (78-98 °C). Community analyses revealed predominance of thermophilic bacterial and archeal genera dwelling in water in contrast to microbial mats (55 °C), namely Methylophilus, Methyloversatilis, Emticicia, Caulobacter, Thermus, Enhydrobacter and Pyrobaculum. Sediment samples having surface temperature (~ 78 °C) were colonized by Pyrobaculum and Chloroflexus while genus Massilia was found to be inhabited in high-temperature sediments (~ 98 °C). Functional analyses of metagenomic sequences revealed genetic enrichment of genes such as type IV secretion system, flagellar assembly and two-component system in contrast to mats. Furthermore, inter-sample comparison of enriched microbial diversity among water, sediment and microbial mats revealed habitat-specific clustering of the samples within same environment highlighting the role of temperature dynamics in modulating community structure across different habitats in same niche. However, function-based analysis demonstrated site-specific clustering among sediment, microbial mat and water samples. Furthermore, a novel thermophilic genotype of the genus Emticicia (designated as strain MM) was reconstructed from metagenome data. This is a correlative study between three major habitats present in geothermal spring environment, i.e., water, sediment and microbial mats revealing greater phylogenetic and functional dispersion emphasizing changing habitat-specific dynamics with temperature.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree false
    58 schema:isPartOf N038c334478344329ba6e56483b8df357
    59 N2a81006ec40349d6889a00cd3e0dc648
    60 sg:journal.1018945
    61 schema:name Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics
    62 schema:pagination 377-388
    63 schema:productId N00ca315fb396400e88d23ec7df8d1823
    64 N5d69375ddd4e4ed5bdf1f2e33c35e0f8
    65 Na31c2d8834814fb3adfefd190ca934d7
    66 Nc6c054efa2d6491cbc2d15fa5127759d
    67 Nf789d1a1ca3a43f19aca5352c16aebec
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111655906
    69 https://doi.org/10.1007/s00203-018-01616-6
    70 schema:sdDatePublished 2019-04-11T12:53
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N458e2d2a3604440b939fc9c59fac0909
    73 schema:url https://link.springer.com/10.1007%2Fs00203-018-01616-6
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N00ca315fb396400e88d23ec7df8d1823 schema:name pubmed_id
    78 schema:value 30683956
    79 rdf:type schema:PropertyValue
    80 N038c334478344329ba6e56483b8df357 schema:issueNumber 3
    81 rdf:type schema:PublicationIssue
    82 N0ae9fc8273a846adadadb70f86665236 rdf:first sg:person.0656101302.46
    83 rdf:rest N0c4bdb5461194e52be16cc76dff16763
    84 N0c4bdb5461194e52be16cc76dff16763 rdf:first sg:person.01125644534.74
    85 rdf:rest N4051709a8ca24c03ae29eec6f81fe5eb
    86 N2a81006ec40349d6889a00cd3e0dc648 schema:volumeNumber 201
    87 rdf:type schema:PublicationVolume
    88 N4051709a8ca24c03ae29eec6f81fe5eb rdf:first sg:person.0707377520.70
    89 rdf:rest rdf:nil
    90 N456c548b705e4114b04e854da687c165 rdf:first sg:person.01324112270.25
    91 rdf:rest N0ae9fc8273a846adadadb70f86665236
    92 N458e2d2a3604440b939fc9c59fac0909 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N5d69375ddd4e4ed5bdf1f2e33c35e0f8 schema:name dimensions_id
    95 schema:value pub.1111655906
    96 rdf:type schema:PropertyValue
    97 Na31c2d8834814fb3adfefd190ca934d7 schema:name readcube_id
    98 schema:value 2abc3bf9ef7d20b3a8444c295c327c3cc5fe915e538b2d68df57b9c04aac2792
    99 rdf:type schema:PropertyValue
    100 Nc6c054efa2d6491cbc2d15fa5127759d schema:name doi
    101 schema:value 10.1007/s00203-018-01616-6
    102 rdf:type schema:PropertyValue
    103 Nf789d1a1ca3a43f19aca5352c16aebec schema:name nlm_unique_id
    104 schema:value 0410427
    105 rdf:type schema:PropertyValue
    106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Biological Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Microbiology
    111 rdf:type schema:DefinedTerm
    112 sg:journal.1018945 schema:issn 0302-8933
    113 1432-072X
    114 schema:name Archives of Microbiology
    115 rdf:type schema:Periodical
    116 sg:person.01125644534.74 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    117 schema:familyName Singh
    118 schema:givenName Yogendra
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125644534.74
    120 rdf:type schema:Person
    121 sg:person.01324112270.25 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    122 schema:familyName Mahato
    123 schema:givenName Nitish Kumar
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324112270.25
    125 rdf:type schema:Person
    126 sg:person.0656101302.46 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    127 schema:familyName Sharma
    128 schema:givenName Anukriti
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656101302.46
    130 rdf:type schema:Person
    131 sg:person.0707377520.70 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    132 schema:familyName Lal
    133 schema:givenName Rup
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707377520.70
    135 rdf:type schema:Person
    136 sg:pub.10.1007/s00792-008-0205-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006223854
    137 https://doi.org/10.1007/s00792-008-0205-3
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s00792-011-0386-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022085867
    140 https://doi.org/10.1007/s00792-011-0386-z
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s12088-015-0538-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053340029
    143 https://doi.org/10.1007/s12088-015-0538-4
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s13213-013-0709-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031758
    146 https://doi.org/10.1007/s13213-013-0709-7
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/ismej.2013.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011847764
    149 https://doi.org/10.1038/ismej.2013.193
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/ismej.2013.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012341961
    152 https://doi.org/10.1038/ismej.2013.237
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nature06810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047805213
    155 https://doi.org/10.1038/nature06810
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nature10576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009049768
    158 https://doi.org/10.1038/nature10576
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nmeth.3589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028162909
    161 https://doi.org/10.1038/nmeth.3589
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/srep25527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142177
    164 https://doi.org/10.1038/srep25527
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1186/1471-2105-12-385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037780208
    167 https://doi.org/10.1186/1471-2105-12-385
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/1471-2164-9-75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013431920
    170 https://doi.org/10.1186/1471-2164-9-75
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1186/s40793-016-0179-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034070331
    173 https://doi.org/10.1186/s40793-016-0179-1
    174 rdf:type schema:CreativeWork
    175 https://app.dimensions.ai/details/publication/pub.1082720245 schema:CreativeWork
    176 https://app.dimensions.ai/details/publication/pub.1082959839 schema:CreativeWork
    177 https://doi.org/10.1016/j.meegid.2014.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042172358
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.syapm.2010.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034581481
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1038/msb.2011.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019249960
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1073/pnas.0409727102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021480522
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1093/bioinformatics/btl446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046470836
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1093/bioinformatics/btp348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020601630
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1093/bioinformatics/btu494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034239058
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1093/nar/gkq747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003548827
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1093/protein/8.9.905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059981282
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1098/rspb.2006.3545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009660818
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1099/ijs.0.64086-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060387045
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1099/ijsem.0.000853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060388875
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1099/ijsem.0.001051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060389070
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1101/gr.074492.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720574
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1111/1758-2229.12297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036658810
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1111/j.1461-0248.2004.00671.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034551474
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1128/genomea.00703-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034384736
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1128/genomea.01020-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033949679
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1128/genomea.01544-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039423682
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1128/jb.00604-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048717857
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1371/journal.pcbi.1000352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024778766
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1371/journal.pcbi.1000465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033847239
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1371/journal.pone.0053350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032612267
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1371/journal.pone.0062901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051975815
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1371/journal.pone.0103115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051310401
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1534/g3.113.005967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020786675
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.2343/geochemj.1.0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019958713
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.3389/fmicb.2013.00148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018399554
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.3389/fmicb.2015.01166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030127634
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.3389/fmicb.2018.03095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110636381
    242 rdf:type schema:CreativeWork
    243 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
    244 schema:name Department of Zoology, University of Delhi, Delhi, India
    245 PhiXgen Pvt. Ltd, Gurugram, India
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...