Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Nitish Kumar Mahato, Anukriti Sharma, Yogendra Singh, Rup Lal

ABSTRACT

Metagenomic surveys across microbial mat (~ 55 °C) samples of high-altitude (1760 m above sea level) Himalayan geothermal springs have revealed specialized community enriched with niche-specific functions. In this study, we have performed metagenomic sequence-based analyses to get insights into taxonomic composition and functional potential of hyperthermophiles in water (~ 95 °C) and sediment samples (78-98 °C). Community analyses revealed predominance of thermophilic bacterial and archeal genera dwelling in water in contrast to microbial mats (55 °C), namely Methylophilus, Methyloversatilis, Emticicia, Caulobacter, Thermus, Enhydrobacter and Pyrobaculum. Sediment samples having surface temperature (~ 78 °C) were colonized by Pyrobaculum and Chloroflexus while genus Massilia was found to be inhabited in high-temperature sediments (~ 98 °C). Functional analyses of metagenomic sequences revealed genetic enrichment of genes such as type IV secretion system, flagellar assembly and two-component system in contrast to mats. Furthermore, inter-sample comparison of enriched microbial diversity among water, sediment and microbial mats revealed habitat-specific clustering of the samples within same environment highlighting the role of temperature dynamics in modulating community structure across different habitats in same niche. However, function-based analysis demonstrated site-specific clustering among sediment, microbial mat and water samples. Furthermore, a novel thermophilic genotype of the genus Emticicia (designated as strain MM) was reconstructed from metagenome data. This is a correlative study between three major habitats present in geothermal spring environment, i.e., water, sediment and microbial mats revealing greater phylogenetic and functional dispersion emphasizing changing habitat-specific dynamics with temperature. More... »

PAGES

377-388

References to SciGraph publications

Journal

TITLE

Archives of Microbiology

ISSUE

3

VOLUME

201

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6

DOI

http://dx.doi.org/10.1007/s00203-018-01616-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111655906

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30683956


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Zoology, University of Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahato", 
        "givenName": "Nitish Kumar", 
        "id": "sg:person.01324112270.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324112270.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Zoology, University of Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Anukriti", 
        "id": "sg:person.0656101302.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656101302.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Zoology, University of Delhi, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Yogendra", 
        "id": "sg:person.01125644534.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125644534.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Zoology, University of Delhi, Delhi, India", 
            "PhiXgen Pvt. Ltd, Gurugram, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lal", 
        "givenName": "Rup", 
        "id": "sg:person.0707377520.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707377520.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkq747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003548827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00792-008-0205-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006223854", 
          "https://doi.org/10.1007/s00792-008-0205-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00792-008-0205-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006223854", 
          "https://doi.org/10.1007/s00792-008-0205-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009049768", 
          "https://doi.org/10.1038/nature10576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2006.3545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009660818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2013.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011847764", 
          "https://doi.org/10.1038/ismej.2013.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2013.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012341961", 
          "https://doi.org/10.1038/ismej.2013.237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013431920", 
          "https://doi.org/10.1186/1471-2164-9-75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2013.00148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018399554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019249960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019249960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2343/geochemj.1.0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019958713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020601630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.113.005967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020786675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.113.005967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020786675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409727102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021480522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00792-011-0386-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022085867", 
          "https://doi.org/10.1007/s00792-011-0386-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024778766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028162909", 
          "https://doi.org/10.1038/nmeth.3589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2015.01166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0053350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032612267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033847239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.01020-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033949679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40793-016-0179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034070331", 
          "https://doi.org/10.1186/s40793-016-0179-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40793-016-0179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034070331", 
          "https://doi.org/10.1186/s40793-016-0179-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40793-016-0179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034070331", 
          "https://doi.org/10.1186/s40793-016-0179-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034142177", 
          "https://doi.org/10.1038/srep25527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034239058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.00703-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034384736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1461-0248.2004.00671.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034551474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.syapm.2010.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034581481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1758-2229.12297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036658810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037780208", 
          "https://doi.org/10.1186/1471-2105-12-385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13213-013-0709-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031758", 
          "https://doi.org/10.1007/s13213-013-0709-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.01544-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039423682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meegid.2014.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042172358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046470836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047805213", 
          "https://doi.org/10.1038/nature06810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00604-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048717857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0103115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051310401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.074492.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0062901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051975815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12088-015-0538-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053340029", 
          "https://doi.org/10.1007/s12088-015-0538-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/8.9.905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059981282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijs.0.64086-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060387045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijsem.0.000853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060388875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijsem.0.001051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060389070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082720245", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082959839", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2018.03095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110636381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2018.03095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110636381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2018.03095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110636381"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Metagenomic surveys across microbial mat (~\u200955\u00a0\u00b0C) samples of high-altitude (1760\u00a0m above sea level) Himalayan geothermal springs have revealed specialized community enriched with niche-specific functions. In this study, we have performed metagenomic sequence-based analyses to get insights into taxonomic composition and functional potential of hyperthermophiles in water (~\u200995\u00a0\u00b0C) and sediment samples (78-98\u00a0\u00b0C). Community analyses revealed predominance of thermophilic bacterial and archeal genera dwelling in water in contrast to microbial mats (55\u00a0\u00b0C), namely Methylophilus, Methyloversatilis, Emticicia, Caulobacter, Thermus, Enhydrobacter and Pyrobaculum. Sediment samples having surface temperature (~\u200978\u00a0\u00b0C) were colonized by Pyrobaculum and Chloroflexus while genus Massilia was found to be inhabited in high-temperature sediments (~\u200998\u00a0\u00b0C). Functional analyses of metagenomic sequences revealed genetic enrichment of genes such as type IV secretion system, flagellar assembly and two-component system in contrast to mats. Furthermore, inter-sample comparison of enriched microbial diversity among water, sediment and microbial mats revealed habitat-specific clustering of the samples within same environment highlighting the role of temperature dynamics in modulating community structure across different habitats in same niche. However, function-based analysis demonstrated site-specific clustering among sediment, microbial mat and water samples. Furthermore, a novel thermophilic genotype of the genus Emticicia (designated as strain MM) was reconstructed from metagenome data. This is a correlative study between three major habitats present in geothermal spring environment, i.e., water, sediment and microbial mats revealing greater phylogenetic and functional dispersion emphasizing changing habitat-specific dynamics with temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00203-018-01616-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018945", 
        "issn": [
          "0302-8933", 
          "1432-072X"
        ], 
        "name": "Archives of Microbiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "201"
      }
    ], 
    "name": "Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics", 
    "pagination": "377-388", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2abc3bf9ef7d20b3a8444c295c327c3cc5fe915e538b2d68df57b9c04aac2792"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30683956"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410427"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00203-018-01616-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111655906"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00203-018-01616-6", 
      "https://app.dimensions.ai/details/publication/pub.1111655906"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72856_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00203-018-01616-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00203-018-01616-6'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00203-018-01616-6 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N114db0d4167d473fbb6fdc408a3fc8b8
4 schema:citation sg:pub.10.1007/s00792-008-0205-3
5 sg:pub.10.1007/s00792-011-0386-z
6 sg:pub.10.1007/s12088-015-0538-4
7 sg:pub.10.1007/s13213-013-0709-7
8 sg:pub.10.1038/ismej.2013.193
9 sg:pub.10.1038/ismej.2013.237
10 sg:pub.10.1038/nature06810
11 sg:pub.10.1038/nature10576
12 sg:pub.10.1038/nmeth.3589
13 sg:pub.10.1038/srep25527
14 sg:pub.10.1186/1471-2105-12-385
15 sg:pub.10.1186/1471-2164-9-75
16 sg:pub.10.1186/s40793-016-0179-1
17 https://app.dimensions.ai/details/publication/pub.1082720245
18 https://app.dimensions.ai/details/publication/pub.1082959839
19 https://doi.org/10.1016/j.meegid.2014.08.007
20 https://doi.org/10.1016/j.syapm.2010.12.002
21 https://doi.org/10.1038/msb.2011.6
22 https://doi.org/10.1073/pnas.0409727102
23 https://doi.org/10.1093/bioinformatics/btl446
24 https://doi.org/10.1093/bioinformatics/btp324
25 https://doi.org/10.1093/bioinformatics/btp348
26 https://doi.org/10.1093/bioinformatics/btu494
27 https://doi.org/10.1093/nar/28.1.27
28 https://doi.org/10.1093/nar/gkh340
29 https://doi.org/10.1093/nar/gkq747
30 https://doi.org/10.1093/protein/8.9.905
31 https://doi.org/10.1098/rspb.2006.3545
32 https://doi.org/10.1099/ijs.0.64086-0
33 https://doi.org/10.1099/ijsem.0.000853
34 https://doi.org/10.1099/ijsem.0.001051
35 https://doi.org/10.1101/gr.074492.107
36 https://doi.org/10.1111/1758-2229.12297
37 https://doi.org/10.1111/j.1461-0248.2004.00671.x
38 https://doi.org/10.1128/genomea.00703-14
39 https://doi.org/10.1128/genomea.01020-14
40 https://doi.org/10.1128/genomea.01544-14
41 https://doi.org/10.1128/jb.00604-12
42 https://doi.org/10.1371/journal.pcbi.1000352
43 https://doi.org/10.1371/journal.pcbi.1000465
44 https://doi.org/10.1371/journal.pone.0053350
45 https://doi.org/10.1371/journal.pone.0062901
46 https://doi.org/10.1371/journal.pone.0103115
47 https://doi.org/10.1534/g3.113.005967
48 https://doi.org/10.2343/geochemj.1.0011
49 https://doi.org/10.3389/fmicb.2013.00148
50 https://doi.org/10.3389/fmicb.2015.01166
51 https://doi.org/10.3389/fmicb.2018.03095
52 schema:datePublished 2019-04
53 schema:datePublishedReg 2019-04-01
54 schema:description Metagenomic surveys across microbial mat (~ 55 °C) samples of high-altitude (1760 m above sea level) Himalayan geothermal springs have revealed specialized community enriched with niche-specific functions. In this study, we have performed metagenomic sequence-based analyses to get insights into taxonomic composition and functional potential of hyperthermophiles in water (~ 95 °C) and sediment samples (78-98 °C). Community analyses revealed predominance of thermophilic bacterial and archeal genera dwelling in water in contrast to microbial mats (55 °C), namely Methylophilus, Methyloversatilis, Emticicia, Caulobacter, Thermus, Enhydrobacter and Pyrobaculum. Sediment samples having surface temperature (~ 78 °C) were colonized by Pyrobaculum and Chloroflexus while genus Massilia was found to be inhabited in high-temperature sediments (~ 98 °C). Functional analyses of metagenomic sequences revealed genetic enrichment of genes such as type IV secretion system, flagellar assembly and two-component system in contrast to mats. Furthermore, inter-sample comparison of enriched microbial diversity among water, sediment and microbial mats revealed habitat-specific clustering of the samples within same environment highlighting the role of temperature dynamics in modulating community structure across different habitats in same niche. However, function-based analysis demonstrated site-specific clustering among sediment, microbial mat and water samples. Furthermore, a novel thermophilic genotype of the genus Emticicia (designated as strain MM) was reconstructed from metagenome data. This is a correlative study between three major habitats present in geothermal spring environment, i.e., water, sediment and microbial mats revealing greater phylogenetic and functional dispersion emphasizing changing habitat-specific dynamics with temperature.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N31bf7c328c2b4893b034806053597de2
59 N6097c72133134cb1a2bee13628346e97
60 sg:journal.1018945
61 schema:name Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics
62 schema:pagination 377-388
63 schema:productId N253d2fca93cb44ceaaa4803d025fc054
64 N71d05403cbd64c5191f3c7256bf060e4
65 N8ad29b572e2c45468a4e3ccc2e6e118a
66 N8cec799844984bc78b47baa794afd034
67 Nab248ff3193b4a7fbd796e19350da02a
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111655906
69 https://doi.org/10.1007/s00203-018-01616-6
70 schema:sdDatePublished 2019-04-11T12:53
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N7c8118202cd24b3d828e49955599d94e
73 schema:url https://link.springer.com/10.1007%2Fs00203-018-01616-6
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N114db0d4167d473fbb6fdc408a3fc8b8 rdf:first sg:person.01324112270.25
78 rdf:rest N4359bb737104451f9264325410ed09f9
79 N253d2fca93cb44ceaaa4803d025fc054 schema:name pubmed_id
80 schema:value 30683956
81 rdf:type schema:PropertyValue
82 N31bf7c328c2b4893b034806053597de2 schema:volumeNumber 201
83 rdf:type schema:PublicationVolume
84 N4359bb737104451f9264325410ed09f9 rdf:first sg:person.0656101302.46
85 rdf:rest N85dde2cbf2c0431aab8f2dfc9bfe03f9
86 N6097c72133134cb1a2bee13628346e97 schema:issueNumber 3
87 rdf:type schema:PublicationIssue
88 N71d05403cbd64c5191f3c7256bf060e4 schema:name doi
89 schema:value 10.1007/s00203-018-01616-6
90 rdf:type schema:PropertyValue
91 N7c8118202cd24b3d828e49955599d94e schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N85dde2cbf2c0431aab8f2dfc9bfe03f9 rdf:first sg:person.01125644534.74
94 rdf:rest N895498b50a4e45f28a1d3d8af89b0193
95 N895498b50a4e45f28a1d3d8af89b0193 rdf:first sg:person.0707377520.70
96 rdf:rest rdf:nil
97 N8ad29b572e2c45468a4e3ccc2e6e118a schema:name nlm_unique_id
98 schema:value 0410427
99 rdf:type schema:PropertyValue
100 N8cec799844984bc78b47baa794afd034 schema:name dimensions_id
101 schema:value pub.1111655906
102 rdf:type schema:PropertyValue
103 Nab248ff3193b4a7fbd796e19350da02a schema:name readcube_id
104 schema:value 2abc3bf9ef7d20b3a8444c295c327c3cc5fe915e538b2d68df57b9c04aac2792
105 rdf:type schema:PropertyValue
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
110 schema:name Microbiology
111 rdf:type schema:DefinedTerm
112 sg:journal.1018945 schema:issn 0302-8933
113 1432-072X
114 schema:name Archives of Microbiology
115 rdf:type schema:Periodical
116 sg:person.01125644534.74 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
117 schema:familyName Singh
118 schema:givenName Yogendra
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125644534.74
120 rdf:type schema:Person
121 sg:person.01324112270.25 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
122 schema:familyName Mahato
123 schema:givenName Nitish Kumar
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324112270.25
125 rdf:type schema:Person
126 sg:person.0656101302.46 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
127 schema:familyName Sharma
128 schema:givenName Anukriti
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656101302.46
130 rdf:type schema:Person
131 sg:person.0707377520.70 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
132 schema:familyName Lal
133 schema:givenName Rup
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707377520.70
135 rdf:type schema:Person
136 sg:pub.10.1007/s00792-008-0205-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006223854
137 https://doi.org/10.1007/s00792-008-0205-3
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00792-011-0386-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022085867
140 https://doi.org/10.1007/s00792-011-0386-z
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s12088-015-0538-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053340029
143 https://doi.org/10.1007/s12088-015-0538-4
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s13213-013-0709-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031758
146 https://doi.org/10.1007/s13213-013-0709-7
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/ismej.2013.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011847764
149 https://doi.org/10.1038/ismej.2013.193
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ismej.2013.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012341961
152 https://doi.org/10.1038/ismej.2013.237
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature06810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047805213
155 https://doi.org/10.1038/nature06810
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature10576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009049768
158 https://doi.org/10.1038/nature10576
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmeth.3589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028162909
161 https://doi.org/10.1038/nmeth.3589
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/srep25527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142177
164 https://doi.org/10.1038/srep25527
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-12-385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037780208
167 https://doi.org/10.1186/1471-2105-12-385
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2164-9-75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013431920
170 https://doi.org/10.1186/1471-2164-9-75
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/s40793-016-0179-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034070331
173 https://doi.org/10.1186/s40793-016-0179-1
174 rdf:type schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1082720245 schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1082959839 schema:CreativeWork
177 https://doi.org/10.1016/j.meegid.2014.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042172358
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.syapm.2010.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034581481
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1038/msb.2011.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019249960
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.0409727102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021480522
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/btl446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046470836
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btp348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020601630
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/btu494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034239058
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/nar/gkq747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003548827
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/protein/8.9.905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059981282
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1098/rspb.2006.3545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009660818
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1099/ijs.0.64086-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060387045
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1099/ijsem.0.000853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060388875
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1099/ijsem.0.001051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060389070
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1101/gr.074492.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720574
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/1758-2229.12297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036658810
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/j.1461-0248.2004.00671.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034551474
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1128/genomea.00703-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034384736
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1128/genomea.01020-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033949679
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1128/genomea.01544-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039423682
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1128/jb.00604-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048717857
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1371/journal.pcbi.1000352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024778766
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1371/journal.pcbi.1000465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033847239
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0053350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032612267
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pone.0062901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051975815
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pone.0103115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051310401
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1534/g3.113.005967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020786675
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2343/geochemj.1.0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019958713
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3389/fmicb.2013.00148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018399554
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3389/fmicb.2015.01166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030127634
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3389/fmicb.2018.03095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110636381
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
244 schema:name Department of Zoology, University of Delhi, Delhi, India
245 PhiXgen Pvt. Ltd, Gurugram, India
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...