Fractal digital sums and codes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-01

AUTHORS

Peter J. Grabner, Tamás Herendi, Robert F. Tichy

ABSTRACT

The positivity of a special digital sum is proved and its fractal nature is discussed. The result is interpreted in terms of running digital sums of a special code.

PAGES

33-39

References to SciGraph publications

  • 1995-12. Sign-changes of the Thue-Morse fractal function and Dirichlet L-series in MANUSCRIPTA MATHEMATICA
  • 1994-01. Character sum constructions of constrained error-correcting codes in APPLICABLE ALGEBRA IN ENGINEERING, COMMUNICATION AND COMPUTING
  • 1983-02. A summation formula related to the binary digits in INVENTIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002000050050

    DOI

    http://dx.doi.org/10.1007/s002000050050

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036076666


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Graz Steyrergasse 30, A-8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grabner", 
            "givenName": "Peter J.", 
            "id": "sg:person.012034162405.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012034162405.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "Department of Mathematics, Kossuth Lajos University, Egyetem t\u00e9r 1, 4010, Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herendi", 
            "givenName": "Tam\u00e1s", 
            "id": "sg:person.01044425457.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044425457.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institut f\u00fcr Mathematik, Technische Universit\u00e4t Graz Steyrergasse 30, A-8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "Robert F.", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01393827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007019889", 
              "https://doi.org/10.1007/bf01393827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-1969-0244149-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016107037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02568009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036088015", 
              "https://doi.org/10.1007/bf02568009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02568009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036088015", 
              "https://doi.org/10.1007/bf02568009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01196624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036344688", 
              "https://doi.org/10.1007/bf01196624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01196624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036344688", 
              "https://doi.org/10.1007/bf01196624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3975(79)90009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042090189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3975(92)00065-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046565432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-314x(92)90104-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049893981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0209014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062841503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-65-1-85-96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092029884"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-01", 
        "datePublishedReg": "1997-01-01", 
        "description": "The positivity of a special digital sum is proved and its fractal nature is discussed. The result is interpreted in terms of running digital sums of a special code.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002000050050", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136287", 
            "issn": [
              "0938-1279", 
              "1432-0622"
            ], 
            "name": "Applicable Algebra in Engineering, Communication and Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Fractal digital sums and codes", 
        "pagination": "33-39", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "abdae336987c6c67ed9bbce49c2e28d2e0829c0cb4bc90512908c252815541c1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002000050050"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036076666"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002000050050", 
          "https://app.dimensions.ai/details/publication/pub.1036076666"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs002000050050"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002000050050'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002000050050'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002000050050'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002000050050'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      20 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002000050050 schema:author N8a64c7ec9386477d9a8c74cde58013e9
    2 schema:citation sg:pub.10.1007/bf01196624
    3 sg:pub.10.1007/bf01393827
    4 sg:pub.10.1007/bf02568009
    5 https://doi.org/10.1016/0022-314x(92)90104-w
    6 https://doi.org/10.1016/0304-3975(79)90009-4
    7 https://doi.org/10.1016/0304-3975(92)00065-y
    8 https://doi.org/10.1090/s0002-9939-1969-0244149-8
    9 https://doi.org/10.1137/0209014
    10 https://doi.org/10.4064/aa-65-1-85-96
    11 schema:datePublished 1997-01
    12 schema:datePublishedReg 1997-01-01
    13 schema:description The positivity of a special digital sum is proved and its fractal nature is discussed. The result is interpreted in terms of running digital sums of a special code.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N100f5460a48d4364b7c44c5b9ac76160
    18 Ncaace16df65b4260ab41617979b2d738
    19 sg:journal.1136287
    20 schema:name Fractal digital sums and codes
    21 schema:pagination 33-39
    22 schema:productId N0609da40e858426e99aa0f88046bcf59
    23 N408f03c979e84b23ba685e6469746f62
    24 Nb144aa1fbbb34b79819e687e0289b252
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036076666
    26 https://doi.org/10.1007/s002000050050
    27 schema:sdDatePublished 2019-04-10T19:57
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N1333900cb82a45158c5238b0bd236071
    30 schema:url http://link.springer.com/10.1007%2Fs002000050050
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N0609da40e858426e99aa0f88046bcf59 schema:name readcube_id
    35 schema:value abdae336987c6c67ed9bbce49c2e28d2e0829c0cb4bc90512908c252815541c1
    36 rdf:type schema:PropertyValue
    37 N100f5460a48d4364b7c44c5b9ac76160 schema:volumeNumber 8
    38 rdf:type schema:PublicationVolume
    39 N1333900cb82a45158c5238b0bd236071 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N1fd648474cf14f43b7f66b4421420c38 schema:name Institut für Mathematik, Technische Universität Graz Steyrergasse 30, A-8010, Graz, Austria
    42 rdf:type schema:Organization
    43 N408f03c979e84b23ba685e6469746f62 schema:name dimensions_id
    44 schema:value pub.1036076666
    45 rdf:type schema:PropertyValue
    46 N418c3872fe454649899307e14c6a4dff rdf:first sg:person.01044425457.46
    47 rdf:rest Nacee78b652a3414b832d98e6811fc54f
    48 N8a64c7ec9386477d9a8c74cde58013e9 rdf:first sg:person.012034162405.58
    49 rdf:rest N418c3872fe454649899307e14c6a4dff
    50 Nacee78b652a3414b832d98e6811fc54f rdf:first sg:person.015312676677.43
    51 rdf:rest rdf:nil
    52 Nb144aa1fbbb34b79819e687e0289b252 schema:name doi
    53 schema:value 10.1007/s002000050050
    54 rdf:type schema:PropertyValue
    55 Ncaace16df65b4260ab41617979b2d738 schema:issueNumber 1
    56 rdf:type schema:PublicationIssue
    57 Nf3e5635ab3444455ab91ccf3b4ac348f schema:name Institut für Mathematik, Technische Universität Graz Steyrergasse 30, A-8010, Graz, Austria
    58 rdf:type schema:Organization
    59 sg:journal.1136287 schema:issn 0938-1279
    60 1432-0622
    61 schema:name Applicable Algebra in Engineering, Communication and Computing
    62 rdf:type schema:Periodical
    63 sg:person.01044425457.46 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    64 schema:familyName Herendi
    65 schema:givenName Tamás
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044425457.46
    67 rdf:type schema:Person
    68 sg:person.012034162405.58 schema:affiliation N1fd648474cf14f43b7f66b4421420c38
    69 schema:familyName Grabner
    70 schema:givenName Peter J.
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012034162405.58
    72 rdf:type schema:Person
    73 sg:person.015312676677.43 schema:affiliation Nf3e5635ab3444455ab91ccf3b4ac348f
    74 schema:familyName Tichy
    75 schema:givenName Robert F.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    77 rdf:type schema:Person
    78 sg:pub.10.1007/bf01196624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036344688
    79 https://doi.org/10.1007/bf01196624
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf01393827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007019889
    82 https://doi.org/10.1007/bf01393827
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf02568009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036088015
    85 https://doi.org/10.1007/bf02568009
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0022-314x(92)90104-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1049893981
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/0304-3975(79)90009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042090189
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0304-3975(92)00065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046565432
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1090/s0002-9939-1969-0244149-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016107037
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1137/0209014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841503
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.4064/aa-65-1-85-96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092029884
    98 rdf:type schema:CreativeWork
    99 https://www.grid.ac/institutes/grid.7122.6 schema:alternateName University of Debrecen
    100 schema:name Department of Mathematics, Kossuth Lajos University, Egyetem tér 1, 4010, Debrecen, Hungary
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...