Interpolating between matching and hedonic pricing models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Brendan Pass

ABSTRACT

We consider the theoretical properties of a model which encompasses bipartite matching under transferable utility on the one hand and hedonic pricing on the other. This framework is intimately connected to tripartite matching problems (known as multi-marginal optimal transport problems in the mathematical literature). We exploit this relationship in two main ways; first, we show that a known structural result from multi-marginal optimal transport can be used to establish an upper bound on the dimension of the support of stable matchings. Next, assuming the distribution of agents on one side of the market is continuous, we identify a condition on their preferences that ensures purity and uniqueness of the stable matching; this condition is a variant of a known condition in the mathematical literature, which guarantees analogous properties in the multi-marginal optimal transport problem. We exhibit several examples of surplus functions for which our condition is satisfied, as well as some for which it fails. More... »

PAGES

1-27

Journal

TITLE

Economic Theory

ISSUE

2

VOLUME

67

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00199-018-1126-8

DOI

http://dx.doi.org/10.1007/s00199-018-1126-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104016184


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alberta", 
          "id": "https://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Mathematical and Statistical Sciences, 632 CAB, University of Alberta, T6G 2G1, Edmonton, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pass", 
        "givenName": "Brendan", 
        "id": "sg:person.07404653203.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404653203.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00199-008-0415-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000948655", 
          "https://doi.org/10.1007/s00199-008-0415-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00199-008-0415-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000948655", 
          "https://doi.org/10.1007/s00199-008-0415-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007153925", 
          "https://doi.org/10.1007/bf02392620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00199-008-0427-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009156282", 
          "https://doi.org/10.1007/s00199-008-0427-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00199-008-0427-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009156282", 
          "https://doi.org/10.1007/s00199-008-0427-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00001679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012624304", 
          "https://doi.org/10.1007/pl00001679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13373-011-0002-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018363216", 
          "https://doi.org/10.1007/s13373-011-0002-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13373-011-0002-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018363216", 
          "https://doi.org/10.1007/s13373-011-0002-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00199-009-0455-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022003968", 
          "https://doi.org/10.1007/s00199-009-0455-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00199-009-0455-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022003968", 
          "https://doi.org/10.1007/s00199-009-0455-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00199-009-0455-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022003968", 
          "https://doi.org/10.1007/s00199-009-0455-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-011-0421-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025199143", 
          "https://doi.org/10.1007/s00526-011-0421-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220100160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026934796", 
          "https://doi.org/10.1007/s002220100160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-20828-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028296622", 
          "https://doi.org/10.1007/978-3-319-20828-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-20828-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028296622", 
          "https://doi.org/10.1007/978-3-319-20828-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008753021652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037304135", 
          "https://doi.org/10.1023/a:1008753021652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039550335", 
          "https://doi.org/10.1007/bf01213255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039550335", 
          "https://doi.org/10.1007/bf01213255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01753437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041709287", 
          "https://doi.org/10.1007/bf01753437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01753437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041709287", 
          "https://doi.org/10.1007/bf01753437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71050-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043936119", 
          "https://doi.org/10.1007/978-3-540-71050-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-71050-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043936119", 
          "https://doi.org/10.1007/978-3-540-71050-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/cocv/2012027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056951928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/cocv/2016003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056952115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/cocv:2004034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056952456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/2015020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057032612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/260084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058573565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/260169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058573650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130930443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1885326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069626335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/jep.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073141137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.2541895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102421474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.23943/princeton/9780691172767.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111588368"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We consider the theoretical properties of a model which encompasses bipartite matching under transferable utility on the one hand and hedonic pricing on the other. This framework is intimately connected to tripartite matching problems (known as multi-marginal optimal transport problems in the mathematical literature). We exploit this relationship in two main ways; first, we show that a known structural result from multi-marginal optimal transport can be used to establish an upper bound on the dimension of the support of stable matchings. Next, assuming the distribution of agents on one side of the market is continuous, we identify a condition on their preferences that ensures purity and uniqueness of the stable matching; this condition is a variant of a known condition in the mathematical literature, which guarantees analogous properties in the multi-marginal optimal transport problem. We exhibit several examples of surplus functions for which our condition is satisfied, as well as some for which it fails.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00199-018-1126-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136838", 
        "issn": [
          "0938-2259", 
          "1432-0479"
        ], 
        "name": "Economic Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Interpolating between matching and hedonic pricing models", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "42bab4944c53893c9e611c8904fc2055d337922b267aaecee06e2fb06a39a5ab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00199-018-1126-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104016184"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00199-018-1126-8", 
      "https://app.dimensions.ai/details/publication/pub.1104016184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117123_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00199-018-1126-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00199-018-1126-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00199-018-1126-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00199-018-1126-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00199-018-1126-8'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00199-018-1126-8 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N93d53ffd38cc4201953b7c1e0908f8be
4 schema:citation sg:pub.10.1007/978-3-319-20828-2
5 sg:pub.10.1007/978-3-540-71050-9
6 sg:pub.10.1007/bf01213255
7 sg:pub.10.1007/bf01753437
8 sg:pub.10.1007/bf02392620
9 sg:pub.10.1007/pl00001679
10 sg:pub.10.1007/s00199-008-0415-z
11 sg:pub.10.1007/s00199-008-0427-8
12 sg:pub.10.1007/s00199-009-0455-z
13 sg:pub.10.1007/s002220100160
14 sg:pub.10.1007/s00526-011-0421-z
15 sg:pub.10.1007/s13373-011-0002-7
16 sg:pub.10.1023/a:1008753021652
17 https://doi.org/10.1051/cocv/2012027
18 https://doi.org/10.1051/cocv/2016003
19 https://doi.org/10.1051/cocv:2004034
20 https://doi.org/10.1051/m2an/2015020
21 https://doi.org/10.1086/260084
22 https://doi.org/10.1086/260169
23 https://doi.org/10.1090/gsm/058
24 https://doi.org/10.1137/130930443
25 https://doi.org/10.2139/ssrn.2541895
26 https://doi.org/10.2307/1885326
27 https://doi.org/10.23943/princeton/9780691172767.001.0001
28 https://doi.org/10.5802/jep.29
29 schema:datePublished 2019-03
30 schema:datePublishedReg 2019-03-01
31 schema:description We consider the theoretical properties of a model which encompasses bipartite matching under transferable utility on the one hand and hedonic pricing on the other. This framework is intimately connected to tripartite matching problems (known as multi-marginal optimal transport problems in the mathematical literature). We exploit this relationship in two main ways; first, we show that a known structural result from multi-marginal optimal transport can be used to establish an upper bound on the dimension of the support of stable matchings. Next, assuming the distribution of agents on one side of the market is continuous, we identify a condition on their preferences that ensures purity and uniqueness of the stable matching; this condition is a variant of a known condition in the mathematical literature, which guarantees analogous properties in the multi-marginal optimal transport problem. We exhibit several examples of surplus functions for which our condition is satisfied, as well as some for which it fails.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N12f2baaf8aeb468b9743e484cbf1d5fc
36 Na2559bfd4f7a43c2a7152d8d441cbd9b
37 sg:journal.1136838
38 schema:name Interpolating between matching and hedonic pricing models
39 schema:pagination 1-27
40 schema:productId N0b2bcae1b45d4d27bdac4cba96b5739f
41 Nb1b06389007048e083ac8ab9a510fc74
42 Ne17b04598b534765abe32da24bb2c0a9
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104016184
44 https://doi.org/10.1007/s00199-018-1126-8
45 schema:sdDatePublished 2019-04-11T14:20
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nd1ce0f07ac204b899d1e090ec11a4f35
48 schema:url https://link.springer.com/10.1007%2Fs00199-018-1126-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0b2bcae1b45d4d27bdac4cba96b5739f schema:name dimensions_id
53 schema:value pub.1104016184
54 rdf:type schema:PropertyValue
55 N12f2baaf8aeb468b9743e484cbf1d5fc schema:volumeNumber 67
56 rdf:type schema:PublicationVolume
57 N93d53ffd38cc4201953b7c1e0908f8be rdf:first sg:person.07404653203.13
58 rdf:rest rdf:nil
59 Na2559bfd4f7a43c2a7152d8d441cbd9b schema:issueNumber 2
60 rdf:type schema:PublicationIssue
61 Nb1b06389007048e083ac8ab9a510fc74 schema:name doi
62 schema:value 10.1007/s00199-018-1126-8
63 rdf:type schema:PropertyValue
64 Nd1ce0f07ac204b899d1e090ec11a4f35 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Ne17b04598b534765abe32da24bb2c0a9 schema:name readcube_id
67 schema:value 42bab4944c53893c9e611c8904fc2055d337922b267aaecee06e2fb06a39a5ab
68 rdf:type schema:PropertyValue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
73 schema:name Applied Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1136838 schema:issn 0938-2259
76 1432-0479
77 schema:name Economic Theory
78 rdf:type schema:Periodical
79 sg:person.07404653203.13 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
80 schema:familyName Pass
81 schema:givenName Brendan
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404653203.13
83 rdf:type schema:Person
84 sg:pub.10.1007/978-3-319-20828-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028296622
85 https://doi.org/10.1007/978-3-319-20828-2
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-540-71050-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043936119
88 https://doi.org/10.1007/978-3-540-71050-9
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01213255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039550335
91 https://doi.org/10.1007/bf01213255
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01753437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041709287
94 https://doi.org/10.1007/bf01753437
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02392620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007153925
97 https://doi.org/10.1007/bf02392620
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/pl00001679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012624304
100 https://doi.org/10.1007/pl00001679
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00199-008-0415-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000948655
103 https://doi.org/10.1007/s00199-008-0415-z
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00199-008-0427-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009156282
106 https://doi.org/10.1007/s00199-008-0427-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00199-009-0455-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022003968
109 https://doi.org/10.1007/s00199-009-0455-z
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s002220100160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026934796
112 https://doi.org/10.1007/s002220100160
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00526-011-0421-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025199143
115 https://doi.org/10.1007/s00526-011-0421-z
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s13373-011-0002-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018363216
118 https://doi.org/10.1007/s13373-011-0002-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/a:1008753021652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037304135
121 https://doi.org/10.1023/a:1008753021652
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1051/cocv/2012027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056951928
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1051/cocv/2016003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056952115
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1051/cocv:2004034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056952456
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1051/m2an/2015020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057032612
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1086/260084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058573565
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1086/260169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058573650
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1090/gsm/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710084
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1137/130930443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871084
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2139/ssrn.2541895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102421474
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2307/1885326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069626335
142 rdf:type schema:CreativeWork
143 https://doi.org/10.23943/princeton/9780691172767.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111588368
144 rdf:type schema:CreativeWork
145 https://doi.org/10.5802/jep.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073141137
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.17089.37 schema:alternateName University of Alberta
148 schema:name Department of Mathematical and Statistical Sciences, 632 CAB, University of Alberta, T6G 2G1, Edmonton, AB, Canada
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...