Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01

AUTHORS

T. Le Corroller, J. Halgrin, M. Pithioux, D. Guenoun, P. Chabrand, P. Champsaur

ABSTRACT

Twenty-one excised femurs were studied using (1) a high-resolution digital X-ray device to estimate three textural parameters, (2) dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD), and (3) mechanical tests to failure. Textural parameters significantly correlated with BMD (p < 0.05) and bone strength (p < 0.05). Combining texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) = 0.74 to adjusted r(2) =0.82 (p < 0.05). INTRODUCTION: The purpose of this study is to determine if the combination of bone texture parameters using a new high-resolution X-ray device and BMD measurement by DXA provided a better prediction of femoral failure load than BMD evaluation alone. METHODS: The proximal ends of 21 excised femurs were studied using (1) a high-resolution digital X-ray device (BMA, D3A Medical Systems) to estimate three textural parameters: fractal parameter Hmean, co-occurrence, and run-length matrices, (2) DXA to measure BMD, and (3) mechanical tests to failure in a side-impact configuration. Regions of interest in the femoral neck, intertrochanteric region, and greater trochanter were selected for DXA and bone texture analysis. Every specimen was scanned twice with repositioning before mechanical testing to assess reproducibility using intraclass correlation coefficient (ICC) with 95% confidence interval. The prediction of femoral failure load was evaluated using multiple regression analysis. RESULTS: Thirteen femoral neck and 8 intertrochanteric fractures were observed with a mean failure load of 2,612 N (SD, 1,382 N). Fractal parameter Hmean, co-occurrence, and run-length matrices each significantly correlated with site-matched BMD (p < 0.05) and bone strength (p < 0.05). The ICC of the textural parameters varied between 0.65 and 0.90. Combining bone texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) =0.74 to adjusted r(2) = 0.82 (p < 0.05). CONCLUSION: In these excised femurs, the combination of bone texture parameters with BMD demonstrated a better performance in the failure load prediction than that of BMD alone. More... »

PAGES

163-169

References to SciGraph publications

  • 2007-05. The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis in OSTEOPOROSIS INTERNATIONAL
  • 2006-02. Structural Analysis of Trabecular Bone of the Proximal Femur Using Multislice Computed Tomography: A Comparison with Dual X-Ray Absorptiometry for Predicting Biomechanical Strength In Vitro in CALCIFIED TISSUE INTERNATIONAL
  • 2006-06. New imaging technologies in the diagnosis of osteoporosis in REVIEWS IN ENDOCRINE AND METABOLIC DISORDERS
  • 2009-03. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction in OSTEOPOROSIS INTERNATIONAL
  • 2007-02. Bone Texture Analysis on Direct Digital Radiographic Images: Precision Study and Relationship with Bone Mineral Density at the Os Calcis in CALCIFIED TISSUE INTERNATIONAL
  • 1995-07. Stress distributions within the proximal femur during gait and falls: Implications for osteoporotic fracture in OSTEOPOROSIS INTERNATIONAL
  • 1999-04. Relationship Between Plain Radiographic Patterns and Three- dimensional Trabecular Architecture in The Human Calcaneus in OSTEOPOROSIS INTERNATIONAL
  • 2006-03. Texture analysis of X-ray radiographs of iliac bone is correlated with bone micro-CT in OSTEOPOROSIS INTERNATIONAL
  • 1998-11. Fractal Analysis of Trabecular Bone Texture on Radiographs: Discriminant Value in Postmenopausal Osteoporosis in OSTEOPOROSIS INTERNATIONAL
  • 2006-06. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone in OSTEOPOROSIS INTERNATIONAL
  • 2008-07. Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study in OSTEOPOROSIS INTERNATIONAL
  • 1998-08. Fractal Analysis of Bone Texture on Os Calcis Radiographs Compared with Trabecular Microarchitecture Analyzed by Histomorphometry in CALCIFIED TISSUE INTERNATIONAL
  • 1992-11. Hip fractures in the elderly: A world-wide projection in OSTEOPOROSIS INTERNATIONAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00198-011-1703-1

    DOI

    http://dx.doi.org/10.1007/s00198-011-1703-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043832540

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21739104


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Absorptiometry, Photon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bone Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Femoral Neck Fractures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Femur", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Femur Neck", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hip Fractures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Osteoporotic Fractures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiographic Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Assessment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stress, Mechanical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Weight-Bearing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Department of Radiology, H\u00f4pital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, 13009, Marseille, France", 
                "Institut des Sciences du Mouvement, UMR CNRS 6233, Universit\u00e9 de la M\u00e9diterran\u00e9e, CP910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Corroller", 
            "givenName": "T.", 
            "id": "sg:person.0603057355.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603057355.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Institut des Sciences du Mouvement, UMR CNRS 6233, Universit\u00e9 de la M\u00e9diterran\u00e9e, CP910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Halgrin", 
            "givenName": "J.", 
            "id": "sg:person.01145676573.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145676573.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Institut des Sciences du Mouvement, UMR CNRS 6233, Universit\u00e9 de la M\u00e9diterran\u00e9e, CP910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pithioux", 
            "givenName": "M.", 
            "id": "sg:person.0635074323.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635074323.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "H\u00f4pital Sainte-Marguerite", 
              "id": "https://www.grid.ac/institutes/grid.414438.e", 
              "name": [
                "Department of Radiology, H\u00f4pital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, 13009, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guenoun", 
            "givenName": "D.", 
            "id": "sg:person.0703207523.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703207523.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Institut des Sciences du Mouvement, UMR CNRS 6233, Universit\u00e9 de la M\u00e9diterran\u00e9e, CP910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chabrand", 
            "givenName": "P.", 
            "id": "sg:person.01042477444.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042477444.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences du Mouvement Etienne-Jules Marey", 
              "id": "https://www.grid.ac/institutes/grid.493284.0", 
              "name": [
                "Department of Radiology, H\u00f4pital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, 13009, Marseille, France", 
                "Institut des Sciences du Mouvement, UMR CNRS 6233, Universit\u00e9 de la M\u00e9diterran\u00e9e, CP910, Avenue de Luminy, 13288, Marseille Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Champsaur", 
            "givenName": "P.", 
            "id": "sg:person.01163650115.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163650115.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1056/nejmra053077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000793776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199503233321202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002087109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001980050108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006146102", 
              "https://doi.org/10.1007/s001980050108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00223-006-0216-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007292643", 
              "https://doi.org/10.1007/s00223-006-0216-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00223-006-0216-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007292643", 
              "https://doi.org/10.1007/s00223-006-0216-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbspin.2005.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008217319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3215535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008326969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01623184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008522902", 
              "https://doi.org/10.1007/bf01623184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01623184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008522902", 
              "https://doi.org/10.1007/bf01623184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2008.04.064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009423519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.090714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011871747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.090714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011871747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01774015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012558994", 
              "https://doi.org/10.1007/bf01774015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01774015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012558994", 
              "https://doi.org/10.1007/bf01774015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00223-005-0070-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014477866", 
              "https://doi.org/10.1007/s00223-005-0070-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00223-005-0070-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014477866", 
              "https://doi.org/10.1007/s00223-005-0070-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(85)90343-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015178444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.061206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015339844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11154-006-9004-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017468143", 
              "https://doi.org/10.1007/s11154-006-9004-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(98)00074-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017760923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.070301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021072279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002239900501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021780804", 
              "https://doi.org/10.1007/s002239900501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2472070982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022185580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-008-0675-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023502896", 
              "https://doi.org/10.1007/s00198-008-0675-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-008-0675-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023502896", 
              "https://doi.org/10.1007/s00198-008-0675-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.2001.16.4.697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024115328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.0301247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024459725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm199606063342307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027522824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(93)92555-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027878716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(93)92555-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027878716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2009.04.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029228103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001980050156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030214314", 
              "https://doi.org/10.1007/s001980050156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0304-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032049459", 
              "https://doi.org/10.1007/s00198-006-0304-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0304-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032049459", 
              "https://doi.org/10.1007/s00198-006-0304-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bone.2003.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033847047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.10090232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036900707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1359/jbmr.2000.15.4.691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038435580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0074-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046963439", 
              "https://doi.org/10.1007/s00198-006-0074-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-006-0074-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046963439", 
              "https://doi.org/10.1007/s00198-006-0074-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-005-0007-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047791232", 
              "https://doi.org/10.1007/s00198-005-0007-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-005-0007-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047791232", 
              "https://doi.org/10.1007/s00198-005-0007-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0021-9290(99)00099-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050183359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-007-0532-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053390154", 
              "https://doi.org/10.1007/s00198-007-0532-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00198-007-0532-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053390154", 
              "https://doi.org/10.1007/s00198-007-0532-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.312.7041.1254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062775836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.312.7041.1254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062775836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2004-1568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064288031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/00004623-197052030-00005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068884850"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-01", 
        "datePublishedReg": "2012-01-01", 
        "description": "Twenty-one excised femurs were studied using (1) a high-resolution digital X-ray device to estimate three textural parameters, (2) dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD), and (3) mechanical tests to failure. Textural parameters significantly correlated with BMD (p < 0.05) and bone strength (p < 0.05). Combining texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2)\u2009= 0.74 to adjusted r(2)\u2009=0.82 (p < 0.05).\nINTRODUCTION: The purpose of this study is to determine if the combination of bone texture parameters using a new high-resolution X-ray device and BMD measurement by DXA provided a better prediction of femoral failure load than BMD evaluation alone.\nMETHODS: The proximal ends of 21 excised femurs were studied using (1) a high-resolution digital X-ray device (BMA, D3A Medical Systems) to estimate three textural parameters: fractal parameter Hmean, co-occurrence, and run-length matrices, (2) DXA to measure BMD, and (3) mechanical tests to failure in a side-impact configuration. Regions of interest in the femoral neck, intertrochanteric region, and greater trochanter were selected for DXA and bone texture analysis. Every specimen was scanned twice with repositioning before mechanical testing to assess reproducibility using intraclass correlation coefficient (ICC) with 95% confidence interval. The prediction of femoral failure load was evaluated using multiple regression analysis.\nRESULTS: Thirteen femoral neck and 8 intertrochanteric fractures were observed with a mean failure load of 2,612 N (SD, 1,382 N). Fractal parameter Hmean, co-occurrence, and run-length matrices each significantly correlated with site-matched BMD (p < 0.05) and bone strength (p < 0.05). The ICC of the textural parameters varied between 0.65 and 0.90. Combining bone texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2)\u2009=0.74 to adjusted r(2)\u2009= 0.82 (p < 0.05).\nCONCLUSION: In these excised femurs, the combination of bone texture parameters with BMD demonstrated a better performance in the failure load prediction than that of BMD alone.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00198-011-1703-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1100834", 
            "issn": [
              "0937-941X", 
              "1433-2965"
            ], 
            "name": "Osteoporosis International", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs", 
        "pagination": "163-169", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d0caab3004d900af312133ae904e0725e15e4aec4baa7ab225309537449cd57d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21739104"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9100105"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00198-011-1703-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043832540"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00198-011-1703-1", 
          "https://app.dimensions.ai/details/publication/pub.1043832540"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00198-011-1703-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00198-011-1703-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00198-011-1703-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00198-011-1703-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00198-011-1703-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    293 TRIPLES      21 PREDICATES      81 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00198-011-1703-1 schema:about N265b8f1e2037436681c0dc08bbb4b365
    2 N303cb6ac4759458c9b3d311e896ba251
    3 N369fdf8af8a34fcd9914c629914e38e0
    4 N39226859697d4c7e8feb23b2dc32ccc2
    5 N5169bcba013e42f882433ce8d0ea7add
    6 N59b7cc15325d4f6aaf8f98cc65e307c8
    7 N63e20f09a5ab48dd977e5b124f9ea8da
    8 N7c081c87a5744d719f675f4847c40b3a
    9 N811757df41554d088500c5a03e59bda4
    10 N8d36481dfd7e4b9f85d06a5ee49c1e91
    11 Na262d933cb384521abce138e8704b884
    12 Na2773af6ecb447118c3d9caa795b02f4
    13 Nab191d936f4d4319b11d65ec066b954d
    14 Nd0031b97489149b288851b89aff16de7
    15 Nedce7a949872470a8b36d696f2b99d41
    16 Nf266378aec4d4e6d9f207aae490356c1
    17 anzsrc-for:11
    18 anzsrc-for:1103
    19 schema:author N832ca04ba65948bda894c6d9d51a430e
    20 schema:citation sg:pub.10.1007/bf01623184
    21 sg:pub.10.1007/bf01774015
    22 sg:pub.10.1007/s00198-005-0007-8
    23 sg:pub.10.1007/s00198-006-0074-5
    24 sg:pub.10.1007/s00198-006-0304-x
    25 sg:pub.10.1007/s00198-007-0532-8
    26 sg:pub.10.1007/s00198-008-0675-2
    27 sg:pub.10.1007/s001980050108
    28 sg:pub.10.1007/s001980050156
    29 sg:pub.10.1007/s00223-005-0070-3
    30 sg:pub.10.1007/s00223-006-0216-y
    31 sg:pub.10.1007/s002239900501
    32 sg:pub.10.1007/s11154-006-9004-2
    33 https://doi.org/10.1016/0002-9343(85)90343-2
    34 https://doi.org/10.1016/0140-6736(93)92555-8
    35 https://doi.org/10.1016/j.bone.2003.10.001
    36 https://doi.org/10.1016/j.ejrad.2008.04.064
    37 https://doi.org/10.1016/j.ejrad.2009.04.074
    38 https://doi.org/10.1016/j.jbspin.2005.12.002
    39 https://doi.org/10.1016/s0021-9290(98)00074-8
    40 https://doi.org/10.1016/s0021-9290(99)00099-8
    41 https://doi.org/10.1056/nejm199503233321202
    42 https://doi.org/10.1056/nejm199606063342307
    43 https://doi.org/10.1056/nejmra053077
    44 https://doi.org/10.1118/1.3215535
    45 https://doi.org/10.1136/bmj.312.7041.1254
    46 https://doi.org/10.1148/radiol.10090232
    47 https://doi.org/10.1148/radiol.2472070982
    48 https://doi.org/10.1210/jc.2004-1568
    49 https://doi.org/10.1359/jbmr.0301247
    50 https://doi.org/10.1359/jbmr.061206
    51 https://doi.org/10.1359/jbmr.070301
    52 https://doi.org/10.1359/jbmr.090714
    53 https://doi.org/10.1359/jbmr.2000.15.4.691
    54 https://doi.org/10.1359/jbmr.2001.16.4.697
    55 https://doi.org/10.2106/00004623-197052030-00005
    56 schema:datePublished 2012-01
    57 schema:datePublishedReg 2012-01-01
    58 schema:description Twenty-one excised femurs were studied using (1) a high-resolution digital X-ray device to estimate three textural parameters, (2) dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD), and (3) mechanical tests to failure. Textural parameters significantly correlated with BMD (p < 0.05) and bone strength (p < 0.05). Combining texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) = 0.74 to adjusted r(2) =0.82 (p < 0.05). INTRODUCTION: The purpose of this study is to determine if the combination of bone texture parameters using a new high-resolution X-ray device and BMD measurement by DXA provided a better prediction of femoral failure load than BMD evaluation alone. METHODS: The proximal ends of 21 excised femurs were studied using (1) a high-resolution digital X-ray device (BMA, D3A Medical Systems) to estimate three textural parameters: fractal parameter Hmean, co-occurrence, and run-length matrices, (2) DXA to measure BMD, and (3) mechanical tests to failure in a side-impact configuration. Regions of interest in the femoral neck, intertrochanteric region, and greater trochanter were selected for DXA and bone texture analysis. Every specimen was scanned twice with repositioning before mechanical testing to assess reproducibility using intraclass correlation coefficient (ICC) with 95% confidence interval. The prediction of femoral failure load was evaluated using multiple regression analysis. RESULTS: Thirteen femoral neck and 8 intertrochanteric fractures were observed with a mean failure load of 2,612 N (SD, 1,382 N). Fractal parameter Hmean, co-occurrence, and run-length matrices each significantly correlated with site-matched BMD (p < 0.05) and bone strength (p < 0.05). The ICC of the textural parameters varied between 0.65 and 0.90. Combining bone texture parameters and BMD significantly improved the fracture load prediction from adjusted r(2) =0.74 to adjusted r(2) = 0.82 (p < 0.05). CONCLUSION: In these excised femurs, the combination of bone texture parameters with BMD demonstrated a better performance in the failure load prediction than that of BMD alone.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree false
    62 schema:isPartOf N015bc36d2ec3431b87c8aeccbccc6576
    63 N6dd047f4d6bd481fad38f9e6bcfd9c84
    64 sg:journal.1100834
    65 schema:name Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs
    66 schema:pagination 163-169
    67 schema:productId N1fe94e26b0ef431e96e18b5263b4121a
    68 N584eb6c3bc944e308da20976a22d9a6a
    69 Nab2757e2d4fd4d70ba4e06f7e7b28111
    70 Nac177540f1124576b1f415a57a62d783
    71 Nc792ab6fc4a84332afc6d8e2dc2c2793
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043832540
    73 https://doi.org/10.1007/s00198-011-1703-1
    74 schema:sdDatePublished 2019-04-10T20:42
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N1edbf9431eb44013affc88d364481367
    77 schema:url http://link.springer.com/10.1007/s00198-011-1703-1
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N015bc36d2ec3431b87c8aeccbccc6576 schema:volumeNumber 23
    82 rdf:type schema:PublicationVolume
    83 N1edbf9431eb44013affc88d364481367 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N1fe94e26b0ef431e96e18b5263b4121a schema:name readcube_id
    86 schema:value d0caab3004d900af312133ae904e0725e15e4aec4baa7ab225309537449cd57d
    87 rdf:type schema:PropertyValue
    88 N265b8f1e2037436681c0dc08bbb4b365 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Osteoporotic Fractures
    90 rdf:type schema:DefinedTerm
    91 N303cb6ac4759458c9b3d311e896ba251 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Femur Neck
    93 rdf:type schema:DefinedTerm
    94 N369fdf8af8a34fcd9914c629914e38e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Aged
    96 rdf:type schema:DefinedTerm
    97 N39226859697d4c7e8feb23b2dc32ccc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Aged, 80 and over
    99 rdf:type schema:DefinedTerm
    100 N5169bcba013e42f882433ce8d0ea7add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Hip Fractures
    102 rdf:type schema:DefinedTerm
    103 N584eb6c3bc944e308da20976a22d9a6a schema:name doi
    104 schema:value 10.1007/s00198-011-1703-1
    105 rdf:type schema:PropertyValue
    106 N59b7cc15325d4f6aaf8f98cc65e307c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Risk Assessment
    108 rdf:type schema:DefinedTerm
    109 N63e20f09a5ab48dd977e5b124f9ea8da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Humans
    111 rdf:type schema:DefinedTerm
    112 N6dd047f4d6bd481fad38f9e6bcfd9c84 schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 N7c081c87a5744d719f675f4847c40b3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Femoral Neck Fractures
    116 rdf:type schema:DefinedTerm
    117 N811757df41554d088500c5a03e59bda4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Absorptiometry, Photon
    119 rdf:type schema:DefinedTerm
    120 N832ca04ba65948bda894c6d9d51a430e rdf:first sg:person.0603057355.66
    121 rdf:rest Ncc4b56d31aaf4c4e91487eba3df0d0a4
    122 N8d36481dfd7e4b9f85d06a5ee49c1e91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Stress, Mechanical
    124 rdf:type schema:DefinedTerm
    125 Na262d933cb384521abce138e8704b884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Male
    127 rdf:type schema:DefinedTerm
    128 Na2773af6ecb447118c3d9caa795b02f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Bone Density
    130 rdf:type schema:DefinedTerm
    131 Nab191d936f4d4319b11d65ec066b954d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Radiographic Image Interpretation, Computer-Assisted
    133 rdf:type schema:DefinedTerm
    134 Nab2757e2d4fd4d70ba4e06f7e7b28111 schema:name nlm_unique_id
    135 schema:value 9100105
    136 rdf:type schema:PropertyValue
    137 Nac177540f1124576b1f415a57a62d783 schema:name pubmed_id
    138 schema:value 21739104
    139 rdf:type schema:PropertyValue
    140 Nc792ab6fc4a84332afc6d8e2dc2c2793 schema:name dimensions_id
    141 schema:value pub.1043832540
    142 rdf:type schema:PropertyValue
    143 Ncc4b56d31aaf4c4e91487eba3df0d0a4 rdf:first sg:person.01145676573.58
    144 rdf:rest Ne46363cfaab1422d9f93ec1f23d2456b
    145 Nd0031b97489149b288851b89aff16de7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Female
    147 rdf:type schema:DefinedTerm
    148 Nd67cd96f396846c4a386dcd490f87a6f rdf:first sg:person.01042477444.47
    149 rdf:rest Ndcf1117345ae46c6849a769685e456b4
    150 Ndcf1117345ae46c6849a769685e456b4 rdf:first sg:person.01163650115.41
    151 rdf:rest rdf:nil
    152 Ne46363cfaab1422d9f93ec1f23d2456b rdf:first sg:person.0635074323.73
    153 rdf:rest Nf2da95f054fa489a9b9bf07ceaebd1de
    154 Nedce7a949872470a8b36d696f2b99d41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Weight-Bearing
    156 rdf:type schema:DefinedTerm
    157 Nf266378aec4d4e6d9f207aae490356c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Femur
    159 rdf:type schema:DefinedTerm
    160 Nf2da95f054fa489a9b9bf07ceaebd1de rdf:first sg:person.0703207523.31
    161 rdf:rest Nd67cd96f396846c4a386dcd490f87a6f
    162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Medical and Health Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Clinical Sciences
    167 rdf:type schema:DefinedTerm
    168 sg:journal.1100834 schema:issn 0937-941X
    169 1433-2965
    170 schema:name Osteoporosis International
    171 rdf:type schema:Periodical
    172 sg:person.01042477444.47 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    173 schema:familyName Chabrand
    174 schema:givenName P.
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042477444.47
    176 rdf:type schema:Person
    177 sg:person.01145676573.58 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    178 schema:familyName Halgrin
    179 schema:givenName J.
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145676573.58
    181 rdf:type schema:Person
    182 sg:person.01163650115.41 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    183 schema:familyName Champsaur
    184 schema:givenName P.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163650115.41
    186 rdf:type schema:Person
    187 sg:person.0603057355.66 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    188 schema:familyName Le Corroller
    189 schema:givenName T.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603057355.66
    191 rdf:type schema:Person
    192 sg:person.0635074323.73 schema:affiliation https://www.grid.ac/institutes/grid.493284.0
    193 schema:familyName Pithioux
    194 schema:givenName M.
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635074323.73
    196 rdf:type schema:Person
    197 sg:person.0703207523.31 schema:affiliation https://www.grid.ac/institutes/grid.414438.e
    198 schema:familyName Guenoun
    199 schema:givenName D.
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703207523.31
    201 rdf:type schema:Person
    202 sg:pub.10.1007/bf01623184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522902
    203 https://doi.org/10.1007/bf01623184
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/bf01774015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012558994
    206 https://doi.org/10.1007/bf01774015
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00198-005-0007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047791232
    209 https://doi.org/10.1007/s00198-005-0007-8
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00198-006-0074-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046963439
    212 https://doi.org/10.1007/s00198-006-0074-5
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00198-006-0304-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032049459
    215 https://doi.org/10.1007/s00198-006-0304-x
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00198-007-0532-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053390154
    218 https://doi.org/10.1007/s00198-007-0532-8
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00198-008-0675-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023502896
    221 https://doi.org/10.1007/s00198-008-0675-2
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s001980050108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006146102
    224 https://doi.org/10.1007/s001980050108
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s001980050156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030214314
    227 https://doi.org/10.1007/s001980050156
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00223-005-0070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014477866
    230 https://doi.org/10.1007/s00223-005-0070-3
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00223-006-0216-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007292643
    233 https://doi.org/10.1007/s00223-006-0216-y
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s002239900501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021780804
    236 https://doi.org/10.1007/s002239900501
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s11154-006-9004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017468143
    239 https://doi.org/10.1007/s11154-006-9004-2
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/0002-9343(85)90343-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015178444
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/0140-6736(93)92555-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027878716
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/j.bone.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033847047
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/j.ejrad.2008.04.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009423519
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/j.ejrad.2009.04.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029228103
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/j.jbspin.2005.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008217319
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/s0021-9290(98)00074-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017760923
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/s0021-9290(99)00099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050183359
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1056/nejm199503233321202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002087109
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1056/nejm199606063342307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027522824
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1056/nejmra053077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000793776
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1118/1.3215535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008326969
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1136/bmj.312.7041.1254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062775836
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1148/radiol.10090232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036900707
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1148/radiol.2472070982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022185580
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1210/jc.2004-1568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064288031
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1359/jbmr.0301247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024459725
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1359/jbmr.061206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339844
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1359/jbmr.070301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021072279
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1359/jbmr.090714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011871747
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1359/jbmr.2000.15.4.691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038435580
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1359/jbmr.2001.16.4.697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024115328
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.2106/00004623-197052030-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068884850
    286 rdf:type schema:CreativeWork
    287 https://www.grid.ac/institutes/grid.414438.e schema:alternateName Hôpital Sainte-Marguerite
    288 schema:name Department of Radiology, Hôpital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, 13009, Marseille, France
    289 rdf:type schema:Organization
    290 https://www.grid.ac/institutes/grid.493284.0 schema:alternateName Institut des Sciences du Mouvement Etienne-Jules Marey
    291 schema:name Department of Radiology, Hôpital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, 13009, Marseille, France
    292 Institut des Sciences du Mouvement, UMR CNRS 6233, Université de la Méditerranée, CP910, Avenue de Luminy, 13288, Marseille Cedex 09, France
    293 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...