Fitting of bone mineral density with consideration of anthropometric parameters View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-05-21

AUTHORS

D. F. Short, B. S. Zemel, V. Gilsanz, H. J. Kalkwarf, J. M. Lappe, S. Mahboubi, S. E. Oberfield, J. A. Shepherd, K. K. Winer, T. N. Hangartner

ABSTRACT

A new model describing normal values of bone mineral density in children has been evaluated, which includes not only the traditional parameters of age, gender, and race, but also weight, height, percent body fat, and sexual maturity. This model may constitute a better comparative norm for a specific child with given anthropometric values.IntroductionPrevious descriptions of children’s bone mineral density (BMD) by age have focused on segmenting diverse populations by race and gender without adjusting for anthropometric variables or have included the effects of anthropometric variables over a relatively homogeneous population.MethodsMultivariate semi-metric smoothing (MS2) provides a way to describe a diverse population using a model that includes multiple effects and their interactions while producing a result that can be smoothed with respect to age in order to provide connected percentiles. We applied MS2 to spine BMD data from the Bone Mineral Density in Childhood Study to evaluate which of gender, race, age, height, weight, percent body fat, and sexual maturity explain variations in the population’s BMD values. By balancing high adjusted R2 values and low mean square errors with clinical needs, a model using age, gender, race, weight, and percent body fat is proposed and examined.ResultsThis model provides narrower distributions and slight shifts of BMD values compared to the traditional model, which includes only age, gender, and race. Thus, the proposed model might constitute a better comparative standard for a specific child with given anthropometric values and should be less dependent on the anthropometric characteristics of the cohort used to devise the model.ConclusionsThe inclusion of multiple explanatory variables in the model, while creating smooth output curves, makes the MS2 method attractive in modeling practically sized data sets. The clinical use of this model by the bone research community has yet to be fully established. More... »

PAGES

1047-1057

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00198-010-1284-4

DOI

http://dx.doi.org/10.1007/s00198-010-1284-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024490283

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20495903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Absorptiometry, Photon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anthropometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blacks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Height", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lumbar Vertebrae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Characteristics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wright State University, Dayton, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.268333.f", 
          "name": [
            "Wright State University, Dayton, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Short", 
        "givenName": "D. F.", 
        "id": "sg:person.01051522451.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051522451.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s Hospital of Philadelphia, Philadelphia, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.239552.a", 
          "name": [
            "Children\u2019s Hospital of Philadelphia, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zemel", 
        "givenName": "B. S.", 
        "id": "sg:person.0773506111.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773506111.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s Hospital Los Angeles, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.239546.f", 
          "name": [
            "Children\u2019s Hospital Los Angeles, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilsanz", 
        "givenName": "V.", 
        "id": "sg:person.01372421417.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372421417.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cincinnati Children\u2019s Hospital Medical Center, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.239573.9", 
          "name": [
            "Cincinnati Children\u2019s Hospital Medical Center, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalkwarf", 
        "givenName": "H. J.", 
        "id": "sg:person.012246615407.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246615407.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Creighton University, Omaha, NE, USA", 
          "id": "http://www.grid.ac/institutes/grid.254748.8", 
          "name": [
            "Creighton University, Omaha, NE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lappe", 
        "givenName": "J. M.", 
        "id": "sg:person.0714345342.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714345342.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s Hospital of Philadelphia, Philadelphia, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.239552.a", 
          "name": [
            "Children\u2019s Hospital of Philadelphia, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahboubi", 
        "givenName": "S.", 
        "id": "sg:person.0715555063.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715555063.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University Medical Center, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.239585.0", 
          "name": [
            "Columbia University Medical Center, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberfield", 
        "givenName": "S. E.", 
        "id": "sg:person.01234712127.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234712127.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California at San Francisco, San Francisco, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266102.1", 
          "name": [
            "University of California at San Francisco, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shepherd", 
        "givenName": "J. A.", 
        "id": "sg:person.01054355272.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054355272.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Child Health and Human Development, Bethesda, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.420089.7", 
          "name": [
            "National Institute of Child Health and Human Development, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winer", 
        "givenName": "K. K.", 
        "id": "sg:person.01076707142.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076707142.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wright State University, Dayton, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.268333.f", 
          "name": [
            "Wright State University, Dayton, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hangartner", 
        "givenName": "T. N.", 
        "id": "sg:person.01316502105.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316502105.57"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-05-21", 
    "datePublishedReg": "2010-05-21", 
    "description": "A new model describing normal values of bone mineral density in children has been evaluated, which includes not only the traditional parameters of age, gender, and race, but also weight, height, percent body fat, and sexual maturity. This model may constitute a better comparative norm for a specific child with given anthropometric values.IntroductionPrevious descriptions of children\u2019s bone mineral density (BMD) by age have focused on segmenting diverse populations by race and gender without adjusting for anthropometric variables or have included the effects of anthropometric variables over a relatively homogeneous population.MethodsMultivariate semi-metric smoothing (MS2) provides a way to describe a diverse population using a model that includes multiple effects and their interactions while producing a result that can be smoothed with respect to age in order to provide connected percentiles. We applied MS2 to spine BMD data from the Bone Mineral Density in Childhood Study to evaluate which of gender, race, age, height, weight, percent body fat, and sexual maturity explain variations in the population\u2019s BMD values. By balancing high adjusted R2 values and low mean square errors with clinical needs, a model using age, gender, race, weight, and percent body fat is proposed and examined.ResultsThis model provides narrower distributions and slight shifts of BMD values compared to the traditional model, which includes only age, gender, and race. Thus, the proposed model might constitute a better comparative standard for a specific child with given anthropometric values and should be less dependent on the anthropometric characteristics of the cohort used to devise the model.ConclusionsThe inclusion of multiple explanatory variables in the model, while creating smooth output curves, makes the MS2 method attractive in modeling practically sized data sets. The clinical use of this model by the bone research community has yet to be fully established.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00198-010-1284-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5247377", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100834", 
        "issn": [
          "0937-941X", 
          "1433-2965"
        ], 
        "name": "Osteoporosis International", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "bone mineral density", 
      "percent body fat", 
      "mineral density", 
      "body fat", 
      "BMD values", 
      "anthropometric values", 
      "child bone mineral density", 
      "anthropometric variables", 
      "normal values", 
      "specific child", 
      "diverse populations", 
      "BMD data", 
      "clinical need", 
      "anthropometric characteristics", 
      "clinical use", 
      "anthropometric parameters", 
      "children", 
      "age", 
      "fat", 
      "comparative norms", 
      "homogeneous population", 
      "multiple effects", 
      "ConclusionsThe inclusion", 
      "gender", 
      "sexual maturity", 
      "population", 
      "traditional parameters", 
      "race", 
      "weight", 
      "percentile", 
      "cohort", 
      "variables", 
      "effect", 
      "values", 
      "study", 
      "comparative standard", 
      "output curves", 
      "model", 
      "height", 
      "data", 
      "childhood studies", 
      "need", 
      "standards", 
      "inclusion", 
      "explanatory variables", 
      "curves", 
      "use", 
      "density", 
      "parameters", 
      "maturity", 
      "results", 
      "MS2", 
      "characteristics", 
      "community", 
      "consideration", 
      "new model", 
      "interaction", 
      "respect", 
      "variation", 
      "distribution", 
      "shift", 
      "traditional models", 
      "norms", 
      "description", 
      "way", 
      "order", 
      "R2 values", 
      "slight shift", 
      "multiple explanatory variables", 
      "data sets", 
      "research community", 
      "error", 
      "narrow distribution", 
      "set", 
      "smoothing", 
      "lower mean square error", 
      "mean square error", 
      "square error", 
      "sized data sets"
    ], 
    "name": "Fitting of bone mineral density with consideration of anthropometric parameters", 
    "pagination": "1047-1057", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024490283"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00198-010-1284-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20495903"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00198-010-1284-4", 
      "https://app.dimensions.ai/details/publication/pub.1024490283"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00198-010-1284-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00198-010-1284-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00198-010-1284-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00198-010-1284-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00198-010-1284-4'


 

This table displays all metadata directly associated to this object as RDF triples.

302 TRIPLES      20 PREDICATES      123 URIs      115 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00198-010-1284-4 schema:about N14c0d5a94e5a41b9843b4dafd607f220
2 N482bba11fa9042328e8eab02b25a5940
3 N4d6d51a20d7140dfb283dcb306bf2b2b
4 N6d73ddf0ec4c4a3c8b36658e0399cea7
5 N73ee5d20a4324555920bd8ef64dbbe3d
6 N7a543ecf7c534b54a11626192fad67bc
7 N7f8a3bd8810a449a9e99b8d46e615766
8 N87cc0d561ecd4993a00802deb9da296a
9 N9513ab79196b4e5f80fb2d0114de38b7
10 N9558f80b390b430bb164a54bffe20bb0
11 N9ae73ac578124d24bcd86715ab88d94c
12 Na02644c670ec468ca1c636a516cd6b4a
13 Na4ca8613ea644d548aecaddf471226b3
14 Nb193d054bfd74dc480920ce21723001c
15 Nc04242177daf4555a585a7c71881b977
16 Nc65babeef942444d953219cb944c8fdf
17 Ne92280ab8891421f8ab0499a1224bc0a
18 Nf583ac5a40b44f34bc3d096623b13b21
19 Nfdcd6b5e208f48129b4bc93601978a7a
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author N76e4c616434d4f7ca762f78f405093ef
23 schema:datePublished 2010-05-21
24 schema:datePublishedReg 2010-05-21
25 schema:description A new model describing normal values of bone mineral density in children has been evaluated, which includes not only the traditional parameters of age, gender, and race, but also weight, height, percent body fat, and sexual maturity. This model may constitute a better comparative norm for a specific child with given anthropometric values.IntroductionPrevious descriptions of children’s bone mineral density (BMD) by age have focused on segmenting diverse populations by race and gender without adjusting for anthropometric variables or have included the effects of anthropometric variables over a relatively homogeneous population.MethodsMultivariate semi-metric smoothing (MS2) provides a way to describe a diverse population using a model that includes multiple effects and their interactions while producing a result that can be smoothed with respect to age in order to provide connected percentiles. We applied MS2 to spine BMD data from the Bone Mineral Density in Childhood Study to evaluate which of gender, race, age, height, weight, percent body fat, and sexual maturity explain variations in the population’s BMD values. By balancing high adjusted R2 values and low mean square errors with clinical needs, a model using age, gender, race, weight, and percent body fat is proposed and examined.ResultsThis model provides narrower distributions and slight shifts of BMD values compared to the traditional model, which includes only age, gender, and race. Thus, the proposed model might constitute a better comparative standard for a specific child with given anthropometric values and should be less dependent on the anthropometric characteristics of the cohort used to devise the model.ConclusionsThe inclusion of multiple explanatory variables in the model, while creating smooth output curves, makes the MS2 method attractive in modeling practically sized data sets. The clinical use of this model by the bone research community has yet to be fully established.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N3737070c10154454b6c201efefe9895d
29 Nb85d0661bf5d4cc9a4458de2337971e1
30 sg:journal.1100834
31 schema:keywords BMD data
32 BMD values
33 ConclusionsThe inclusion
34 MS2
35 R2 values
36 age
37 anthropometric characteristics
38 anthropometric parameters
39 anthropometric values
40 anthropometric variables
41 body fat
42 bone mineral density
43 characteristics
44 child bone mineral density
45 childhood studies
46 children
47 clinical need
48 clinical use
49 cohort
50 community
51 comparative norms
52 comparative standard
53 consideration
54 curves
55 data
56 data sets
57 density
58 description
59 distribution
60 diverse populations
61 effect
62 error
63 explanatory variables
64 fat
65 gender
66 height
67 homogeneous population
68 inclusion
69 interaction
70 lower mean square error
71 maturity
72 mean square error
73 mineral density
74 model
75 multiple effects
76 multiple explanatory variables
77 narrow distribution
78 need
79 new model
80 normal values
81 norms
82 order
83 output curves
84 parameters
85 percent body fat
86 percentile
87 population
88 race
89 research community
90 respect
91 results
92 set
93 sexual maturity
94 shift
95 sized data sets
96 slight shift
97 smoothing
98 specific child
99 square error
100 standards
101 study
102 traditional models
103 traditional parameters
104 use
105 values
106 variables
107 variation
108 way
109 weight
110 schema:name Fitting of bone mineral density with consideration of anthropometric parameters
111 schema:pagination 1047-1057
112 schema:productId N4284a804fc564f989b32f0317725d7d9
113 N4a2c6231c03c4dbeaf3422f16c0f18bb
114 N91c269169f39482888813c526ad7f98a
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024490283
116 https://doi.org/10.1007/s00198-010-1284-4
117 schema:sdDatePublished 2022-11-24T20:55
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N655f8b7b18e646229bdb9a1c4d077c1b
120 schema:url https://doi.org/10.1007/s00198-010-1284-4
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N14c0d5a94e5a41b9843b4dafd607f220 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Reference Values
126 rdf:type schema:DefinedTerm
127 N3737070c10154454b6c201efefe9895d schema:volumeNumber 22
128 rdf:type schema:PublicationVolume
129 N3ac8fe0228ba45e3a5fe68d31d87c1fb rdf:first sg:person.01076707142.94
130 rdf:rest Ndfbbc014d281415d94f18100bb0668b6
131 N40e58ab3b3954a6e8878a527d7d2c93b rdf:first sg:person.012246615407.88
132 rdf:rest Nb6df127b125c4636a232e08701fd0e79
133 N4284a804fc564f989b32f0317725d7d9 schema:name dimensions_id
134 schema:value pub.1024490283
135 rdf:type schema:PropertyValue
136 N482bba11fa9042328e8eab02b25a5940 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Child, Preschool
138 rdf:type schema:DefinedTerm
139 N4a2c6231c03c4dbeaf3422f16c0f18bb schema:name doi
140 schema:value 10.1007/s00198-010-1284-4
141 rdf:type schema:PropertyValue
142 N4d6d51a20d7140dfb283dcb306bf2b2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Adipose Tissue
144 rdf:type schema:DefinedTerm
145 N655f8b7b18e646229bdb9a1c4d077c1b schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N6d73ddf0ec4c4a3c8b36658e0399cea7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Bone Density
149 rdf:type schema:DefinedTerm
150 N73ee5d20a4324555920bd8ef64dbbe3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Absorptiometry, Photon
152 rdf:type schema:DefinedTerm
153 N76e4c616434d4f7ca762f78f405093ef rdf:first sg:person.01051522451.51
154 rdf:rest N965a741801b941a7bcd6e8c8e400bf97
155 N77ebec51cefb4326a5e28d808d796e92 rdf:first sg:person.0715555063.57
156 rdf:rest Nbf743e86c6a543bbb05cf3427ad6829a
157 N7a543ecf7c534b54a11626192fad67bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Body Weight
159 rdf:type schema:DefinedTerm
160 N7f8a3bd8810a449a9e99b8d46e615766 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Follow-Up Studies
162 rdf:type schema:DefinedTerm
163 N87cc0d561ecd4993a00802deb9da296a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Child
165 rdf:type schema:DefinedTerm
166 N91c269169f39482888813c526ad7f98a schema:name pubmed_id
167 schema:value 20495903
168 rdf:type schema:PropertyValue
169 N9513ab79196b4e5f80fb2d0114de38b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Models, Biological
171 rdf:type schema:DefinedTerm
172 N9558f80b390b430bb164a54bffe20bb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Humans
174 rdf:type schema:DefinedTerm
175 N965a741801b941a7bcd6e8c8e400bf97 rdf:first sg:person.0773506111.36
176 rdf:rest Ne79a791e63eb461ebd9d30f0c4a51da4
177 N9ae73ac578124d24bcd86715ab88d94c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Blacks
179 rdf:type schema:DefinedTerm
180 Na02644c670ec468ca1c636a516cd6b4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Female
182 rdf:type schema:DefinedTerm
183 Na4ca8613ea644d548aecaddf471226b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Male
185 rdf:type schema:DefinedTerm
186 Nb193d054bfd74dc480920ce21723001c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Anthropometry
188 rdf:type schema:DefinedTerm
189 Nb6df127b125c4636a232e08701fd0e79 rdf:first sg:person.0714345342.23
190 rdf:rest N77ebec51cefb4326a5e28d808d796e92
191 Nb85d0661bf5d4cc9a4458de2337971e1 schema:issueNumber 4
192 rdf:type schema:PublicationIssue
193 Nbf743e86c6a543bbb05cf3427ad6829a rdf:first sg:person.01234712127.03
194 rdf:rest Ne3e320351ec24d08bed76853b6e1b7ae
195 Nc04242177daf4555a585a7c71881b977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Lumbar Vertebrae
197 rdf:type schema:DefinedTerm
198 Nc65babeef942444d953219cb944c8fdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Aging
200 rdf:type schema:DefinedTerm
201 Ndfbbc014d281415d94f18100bb0668b6 rdf:first sg:person.01316502105.57
202 rdf:rest rdf:nil
203 Ne3e320351ec24d08bed76853b6e1b7ae rdf:first sg:person.01054355272.00
204 rdf:rest N3ac8fe0228ba45e3a5fe68d31d87c1fb
205 Ne79a791e63eb461ebd9d30f0c4a51da4 rdf:first sg:person.01372421417.05
206 rdf:rest N40e58ab3b3954a6e8878a527d7d2c93b
207 Ne92280ab8891421f8ab0499a1224bc0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Sex Characteristics
209 rdf:type schema:DefinedTerm
210 Nf583ac5a40b44f34bc3d096623b13b21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Body Height
212 rdf:type schema:DefinedTerm
213 Nfdcd6b5e208f48129b4bc93601978a7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Adolescent
215 rdf:type schema:DefinedTerm
216 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
217 schema:name Medical and Health Sciences
218 rdf:type schema:DefinedTerm
219 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
220 schema:name Clinical Sciences
221 rdf:type schema:DefinedTerm
222 sg:grant.5247377 http://pending.schema.org/fundedItem sg:pub.10.1007/s00198-010-1284-4
223 rdf:type schema:MonetaryGrant
224 sg:journal.1100834 schema:issn 0937-941X
225 1433-2965
226 schema:name Osteoporosis International
227 schema:publisher Springer Nature
228 rdf:type schema:Periodical
229 sg:person.01051522451.51 schema:affiliation grid-institutes:grid.268333.f
230 schema:familyName Short
231 schema:givenName D. F.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051522451.51
233 rdf:type schema:Person
234 sg:person.01054355272.00 schema:affiliation grid-institutes:grid.266102.1
235 schema:familyName Shepherd
236 schema:givenName J. A.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054355272.00
238 rdf:type schema:Person
239 sg:person.01076707142.94 schema:affiliation grid-institutes:grid.420089.7
240 schema:familyName Winer
241 schema:givenName K. K.
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076707142.94
243 rdf:type schema:Person
244 sg:person.012246615407.88 schema:affiliation grid-institutes:grid.239573.9
245 schema:familyName Kalkwarf
246 schema:givenName H. J.
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246615407.88
248 rdf:type schema:Person
249 sg:person.01234712127.03 schema:affiliation grid-institutes:grid.239585.0
250 schema:familyName Oberfield
251 schema:givenName S. E.
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234712127.03
253 rdf:type schema:Person
254 sg:person.01316502105.57 schema:affiliation grid-institutes:grid.268333.f
255 schema:familyName Hangartner
256 schema:givenName T. N.
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316502105.57
258 rdf:type schema:Person
259 sg:person.01372421417.05 schema:affiliation grid-institutes:grid.239546.f
260 schema:familyName Gilsanz
261 schema:givenName V.
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372421417.05
263 rdf:type schema:Person
264 sg:person.0714345342.23 schema:affiliation grid-institutes:grid.254748.8
265 schema:familyName Lappe
266 schema:givenName J. M.
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714345342.23
268 rdf:type schema:Person
269 sg:person.0715555063.57 schema:affiliation grid-institutes:grid.239552.a
270 schema:familyName Mahboubi
271 schema:givenName S.
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715555063.57
273 rdf:type schema:Person
274 sg:person.0773506111.36 schema:affiliation grid-institutes:grid.239552.a
275 schema:familyName Zemel
276 schema:givenName B. S.
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773506111.36
278 rdf:type schema:Person
279 grid-institutes:grid.239546.f schema:alternateName Children’s Hospital Los Angeles, Los Angeles, CA, USA
280 schema:name Children’s Hospital Los Angeles, Los Angeles, CA, USA
281 rdf:type schema:Organization
282 grid-institutes:grid.239552.a schema:alternateName Children’s Hospital of Philadelphia, Philadelphia, PA, USA
283 schema:name Children’s Hospital of Philadelphia, Philadelphia, PA, USA
284 rdf:type schema:Organization
285 grid-institutes:grid.239573.9 schema:alternateName Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
286 schema:name Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
287 rdf:type schema:Organization
288 grid-institutes:grid.239585.0 schema:alternateName Columbia University Medical Center, New York, NY, USA
289 schema:name Columbia University Medical Center, New York, NY, USA
290 rdf:type schema:Organization
291 grid-institutes:grid.254748.8 schema:alternateName Creighton University, Omaha, NE, USA
292 schema:name Creighton University, Omaha, NE, USA
293 rdf:type schema:Organization
294 grid-institutes:grid.266102.1 schema:alternateName University of California at San Francisco, San Francisco, CA, USA
295 schema:name University of California at San Francisco, San Francisco, CA, USA
296 rdf:type schema:Organization
297 grid-institutes:grid.268333.f schema:alternateName Wright State University, Dayton, OH, USA
298 schema:name Wright State University, Dayton, OH, USA
299 rdf:type schema:Organization
300 grid-institutes:grid.420089.7 schema:alternateName National Institute of Child Health and Human Development, Bethesda, MD, USA
301 schema:name National Institute of Child Health and Human Development, Bethesda, MD, USA
302 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...