Validation of various osteoporosis risk indices in elderly Chinese females in Singapore View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-08

AUTHORS

S.-P. Chan, C. C. Teo, S. A. Ng, N. Goh, C. Tan, M. Deurenberg-Yap

ABSTRACT

INTRODUCTION: This study aimed to compare the sensitivity and specificity of various published indices for identifying elderly Chinese females at risk of osteoporosis in Singapore. METHODS: The indices considered were the Simple Calculated Osteoporosis Risk Estimation (SCORE), the Osteoporosis Risk Assessment Instrument (ORAI), the Age Bulk One or Never Estrogens (ABONE), body weight (WEIGHT), and the Osteoporosis Self-Assessment Tool for Asians (OSTA). Altogether, 135 postmenopausal Chinese female subjects aged 55 years and older participated in the study, and their bone mineral density (BMD) was measured with dual-energy x-ray absorptiometry. Subjects were classified as osteoporotic if their femoral neck BMD T-score was -2.5 or lower. Receiver operating characteristic (ROC) curves were generated to determine the indices' cut-off points, sensitivity, and specificity. RESULTS: OSTA had the highest discriminatory power, with an estimated area under the ROC curve of 0.82. This was followed by SCORE (0.80), WEIGHT (0.78), ORAI (0.76), and ABONE (0.70). At the cut-off point of -2, OSTA achieved sensitivity and specificity of 91% and 59%, respectively. CONCLUSION: The study showed that OSTA is an effective index for identifying postmenopausal women at risk for osteoporosis. More... »

PAGES

1182-1188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00198-005-0051-4

DOI

http://dx.doi.org/10.1007/s00198-005-0051-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017569172

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16699739


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteoporosis, Postmenopausal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Health Promotion Board", 
          "id": "https://www.grid.ac/institutes/grid.413892.5", 
          "name": [
            "National Disease Registries Office, Research & Information Management Division, Health Promotion Board, 3 Second Hospital Avenue, 168937, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "S.-P.", 
        "id": "sg:person.01275226077.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275226077.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion Board", 
          "id": "https://www.grid.ac/institutes/grid.413892.5", 
          "name": [
            "National Disease Registries Office, Research & Information Management Division, Health Promotion Board, 3 Second Hospital Avenue, 168937, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teo", 
        "givenName": "C. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion Board", 
          "id": "https://www.grid.ac/institutes/grid.413892.5", 
          "name": [
            "National Disease Registries Office, Research & Information Management Division, Health Promotion Board, 3 Second Hospital Avenue, 168937, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ng", 
        "givenName": "S. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Promotion Board", 
          "id": "https://www.grid.ac/institutes/grid.413892.5", 
          "name": [
            "Adult Health Promotion Division, Health Promotion Board, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goh", 
        "givenName": "N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changi General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413815.a", 
          "name": [
            "Elderly and Continuing Care Division, Ministry of Health, Singapore", 
            "Department of Geriatric Medicine, Changi General Hospital, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "C.", 
        "id": "sg:person.011563622432.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563622432.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "National Disease Registries Office, Research & Information Management Division, Health Promotion Board, 3 Second Hospital Avenue, 168937, Singapore, Singapore", 
            "Department of Community, Occupational and Family Medicine, National University of Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deurenberg-Yap", 
        "givenName": "M.", 
        "id": "sg:person.01262064764.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262064764.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01623184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008522902", 
          "https://doi.org/10.1007/bf01623184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01623184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008522902", 
          "https://doi.org/10.1007/bf01623184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mob.2000.106594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019819665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-003-1428-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023405579", 
          "https://doi.org/10.1007/s00198-003-1428-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1385/jcd:6:3:247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028821017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001980170070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033814431", 
          "https://doi.org/10.1007/s001980170070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001980170121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034995820", 
          "https://doi.org/10.1007/s001980170121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-2998(78)80014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035405952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01623934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052665712", 
          "https://doi.org/10.1007/bf01623934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.312.7041.1254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062775836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.312.7041.1254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062775836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074345542", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074640848", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075011136", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.148.3.6878708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082007470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.143.1.7063747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082130998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082983467", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082988079", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-08", 
    "datePublishedReg": "2006-08-01", 
    "description": "INTRODUCTION: This study aimed to compare the sensitivity and specificity of various published indices for identifying elderly Chinese females at risk of osteoporosis in Singapore.\nMETHODS: The indices considered were the Simple Calculated Osteoporosis Risk Estimation (SCORE), the Osteoporosis Risk Assessment Instrument (ORAI), the Age Bulk One or Never Estrogens (ABONE), body weight (WEIGHT), and the Osteoporosis Self-Assessment Tool for Asians (OSTA). Altogether, 135 postmenopausal Chinese female subjects aged 55 years and older participated in the study, and their bone mineral density (BMD) was measured with dual-energy x-ray absorptiometry. Subjects were classified as osteoporotic if their femoral neck BMD T-score was -2.5 or lower. Receiver operating characteristic (ROC) curves were generated to determine the indices' cut-off points, sensitivity, and specificity.\nRESULTS: OSTA had the highest discriminatory power, with an estimated area under the ROC curve of 0.82. This was followed by SCORE (0.80), WEIGHT (0.78), ORAI (0.76), and ABONE (0.70). At the cut-off point of -2, OSTA achieved sensitivity and specificity of 91% and 59%, respectively.\nCONCLUSION: The study showed that OSTA is an effective index for identifying postmenopausal women at risk for osteoporosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00198-005-0051-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100834", 
        "issn": [
          "0937-941X", 
          "1433-2965"
        ], 
        "name": "Osteoporosis International", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Validation of various osteoporosis risk indices in elderly Chinese females in Singapore", 
    "pagination": "1182-1188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "53b50c69c1b02dd6971f1d15fe5125fb371b75b467cc6ba3e29c7be575a808a4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16699739"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100105"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00198-005-0051-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017569172"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00198-005-0051-4", 
      "https://app.dimensions.ai/details/publication/pub.1017569172"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13102_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00198-005-0051-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00198-005-0051-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00198-005-0051-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00198-005-0051-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00198-005-0051-4'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      56 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00198-005-0051-4 schema:about N04b0efe25dae459f9971e18337cae294
2 N106b9aa931984802b2881d61c14d856a
3 N4213d65796e747bca5853cacadc974c6
4 N4be41dd0d46d4d528dcd418533b232f7
5 N4d5edd1e995d44e5bdc3c651898a7430
6 N5e2bc47f611b41f896badcf19175afc2
7 N61d7370bd07a4808bf4085353e8c0e83
8 N68d6b1dd067242cd9054e063f275e4f4
9 N80656857f8a44e649777d63b2d976c66
10 Ndabb3d7ccc1b4eb2bfb90c61f277468f
11 Nfe5d1468935849a38c67bec39d208932
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author N99f1cb9271cc45d5a6d1893b28b28689
15 schema:citation sg:pub.10.1007/bf01623184
16 sg:pub.10.1007/bf01623934
17 sg:pub.10.1007/s00198-003-1428-x
18 sg:pub.10.1007/s001980170070
19 sg:pub.10.1007/s001980170121
20 https://app.dimensions.ai/details/publication/pub.1074345542
21 https://app.dimensions.ai/details/publication/pub.1074640848
22 https://app.dimensions.ai/details/publication/pub.1075011136
23 https://app.dimensions.ai/details/publication/pub.1082983467
24 https://app.dimensions.ai/details/publication/pub.1082988079
25 https://doi.org/10.1016/s0001-2998(78)80014-2
26 https://doi.org/10.1067/mob.2000.106594
27 https://doi.org/10.1136/bmj.312.7041.1254
28 https://doi.org/10.1148/radiology.143.1.7063747
29 https://doi.org/10.1148/radiology.148.3.6878708
30 https://doi.org/10.1385/jcd:6:3:247
31 schema:datePublished 2006-08
32 schema:datePublishedReg 2006-08-01
33 schema:description INTRODUCTION: This study aimed to compare the sensitivity and specificity of various published indices for identifying elderly Chinese females at risk of osteoporosis in Singapore. METHODS: The indices considered were the Simple Calculated Osteoporosis Risk Estimation (SCORE), the Osteoporosis Risk Assessment Instrument (ORAI), the Age Bulk One or Never Estrogens (ABONE), body weight (WEIGHT), and the Osteoporosis Self-Assessment Tool for Asians (OSTA). Altogether, 135 postmenopausal Chinese female subjects aged 55 years and older participated in the study, and their bone mineral density (BMD) was measured with dual-energy x-ray absorptiometry. Subjects were classified as osteoporotic if their femoral neck BMD T-score was -2.5 or lower. Receiver operating characteristic (ROC) curves were generated to determine the indices' cut-off points, sensitivity, and specificity. RESULTS: OSTA had the highest discriminatory power, with an estimated area under the ROC curve of 0.82. This was followed by SCORE (0.80), WEIGHT (0.78), ORAI (0.76), and ABONE (0.70). At the cut-off point of -2, OSTA achieved sensitivity and specificity of 91% and 59%, respectively. CONCLUSION: The study showed that OSTA is an effective index for identifying postmenopausal women at risk for osteoporosis.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N01a1fa2ee78645dca940794870510f90
38 N03587baab06d42488c1ef9489d4c6464
39 sg:journal.1100834
40 schema:name Validation of various osteoporosis risk indices in elderly Chinese females in Singapore
41 schema:pagination 1182-1188
42 schema:productId N07ea0c85d8dc46eabe975546a5cf5016
43 N14bb416a329a4a2991cedc8946cf1505
44 N1c6cf2bfe12549afb19b031a387f7dab
45 N3f0fa37618fa4fbb9b626577cd1ce6cc
46 N55e4a2c7f7164353a4a67af7e8cbae9a
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569172
48 https://doi.org/10.1007/s00198-005-0051-4
49 schema:sdDatePublished 2019-04-11T14:32
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nb84eb5d600d644f5a6860da3f921eb69
52 schema:url http://link.springer.com/10.1007/s00198-005-0051-4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N01a1fa2ee78645dca940794870510f90 schema:issueNumber 8
57 rdf:type schema:PublicationIssue
58 N03587baab06d42488c1ef9489d4c6464 schema:volumeNumber 17
59 rdf:type schema:PublicationVolume
60 N04b0efe25dae459f9971e18337cae294 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name ROC Curve
62 rdf:type schema:DefinedTerm
63 N05318b6a7d484f4a9501e6ea8c294b53 rdf:first N8a1d9e507007498f9b2a757409dbd1a4
64 rdf:rest Ne85932abd3e34d209887d69d65782e88
65 N07ea0c85d8dc46eabe975546a5cf5016 schema:name doi
66 schema:value 10.1007/s00198-005-0051-4
67 rdf:type schema:PropertyValue
68 N106b9aa931984802b2881d61c14d856a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Area Under Curve
70 rdf:type schema:DefinedTerm
71 N14bb416a329a4a2991cedc8946cf1505 schema:name readcube_id
72 schema:value 53b50c69c1b02dd6971f1d15fe5125fb371b75b467cc6ba3e29c7be575a808a4
73 rdf:type schema:PropertyValue
74 N1c6cf2bfe12549afb19b031a387f7dab schema:name pubmed_id
75 schema:value 16699739
76 rdf:type schema:PropertyValue
77 N1d02aebfd22140f68d4c6c2addcb5fed rdf:first N6ab52b37a5d5417fb4f195b68a4189ee
78 rdf:rest N05318b6a7d484f4a9501e6ea8c294b53
79 N3f0fa37618fa4fbb9b626577cd1ce6cc schema:name nlm_unique_id
80 schema:value 9100105
81 rdf:type schema:PropertyValue
82 N4213d65796e747bca5853cacadc974c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Sensitivity and Specificity
84 rdf:type schema:DefinedTerm
85 N4be41dd0d46d4d528dcd418533b232f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Osteoporosis, Postmenopausal
87 rdf:type schema:DefinedTerm
88 N4d5edd1e995d44e5bdc3c651898a7430 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Humans
90 rdf:type schema:DefinedTerm
91 N55e4a2c7f7164353a4a67af7e8cbae9a schema:name dimensions_id
92 schema:value pub.1017569172
93 rdf:type schema:PropertyValue
94 N5e2bc47f611b41f896badcf19175afc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Bone Density
96 rdf:type schema:DefinedTerm
97 N61d7370bd07a4808bf4085353e8c0e83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Aged
99 rdf:type schema:DefinedTerm
100 N68d6b1dd067242cd9054e063f275e4f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Risk Assessment
102 rdf:type schema:DefinedTerm
103 N6ab52b37a5d5417fb4f195b68a4189ee schema:affiliation https://www.grid.ac/institutes/grid.413892.5
104 schema:familyName Teo
105 schema:givenName C. C.
106 rdf:type schema:Person
107 N80656857f8a44e649777d63b2d976c66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Female
109 rdf:type schema:DefinedTerm
110 N8a1d9e507007498f9b2a757409dbd1a4 schema:affiliation https://www.grid.ac/institutes/grid.413892.5
111 schema:familyName Ng
112 schema:givenName S. A.
113 rdf:type schema:Person
114 N99f1cb9271cc45d5a6d1893b28b28689 rdf:first sg:person.01275226077.14
115 rdf:rest N1d02aebfd22140f68d4c6c2addcb5fed
116 Nacd66d4d6b524456943d55dd97a31233 rdf:first sg:person.01262064764.24
117 rdf:rest rdf:nil
118 Nb84eb5d600d644f5a6860da3f921eb69 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Ndabb3d7ccc1b4eb2bfb90c61f277468f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Body Weight
122 rdf:type schema:DefinedTerm
123 Ndc058f230b974f4bbad16e458721ece6 schema:affiliation https://www.grid.ac/institutes/grid.413892.5
124 schema:familyName Goh
125 schema:givenName N.
126 rdf:type schema:Person
127 Ne0f80f22fe9947b49938c86da03cbaa7 rdf:first sg:person.011563622432.09
128 rdf:rest Nacd66d4d6b524456943d55dd97a31233
129 Ne85932abd3e34d209887d69d65782e88 rdf:first Ndc058f230b974f4bbad16e458721ece6
130 rdf:rest Ne0f80f22fe9947b49938c86da03cbaa7
131 Nfe5d1468935849a38c67bec39d208932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Middle Aged
133 rdf:type schema:DefinedTerm
134 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
135 schema:name Medical and Health Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
138 schema:name Clinical Sciences
139 rdf:type schema:DefinedTerm
140 sg:journal.1100834 schema:issn 0937-941X
141 1433-2965
142 schema:name Osteoporosis International
143 rdf:type schema:Periodical
144 sg:person.011563622432.09 schema:affiliation https://www.grid.ac/institutes/grid.413815.a
145 schema:familyName Tan
146 schema:givenName C.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563622432.09
148 rdf:type schema:Person
149 sg:person.01262064764.24 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
150 schema:familyName Deurenberg-Yap
151 schema:givenName M.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262064764.24
153 rdf:type schema:Person
154 sg:person.01275226077.14 schema:affiliation https://www.grid.ac/institutes/grid.413892.5
155 schema:familyName Chan
156 schema:givenName S.-P.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275226077.14
158 rdf:type schema:Person
159 sg:pub.10.1007/bf01623184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522902
160 https://doi.org/10.1007/bf01623184
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf01623934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052665712
163 https://doi.org/10.1007/bf01623934
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00198-003-1428-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023405579
166 https://doi.org/10.1007/s00198-003-1428-x
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s001980170070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814431
169 https://doi.org/10.1007/s001980170070
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s001980170121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034995820
172 https://doi.org/10.1007/s001980170121
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1074345542 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1074640848 schema:CreativeWork
176 https://app.dimensions.ai/details/publication/pub.1075011136 schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1082983467 schema:CreativeWork
178 https://app.dimensions.ai/details/publication/pub.1082988079 schema:CreativeWork
179 https://doi.org/10.1016/s0001-2998(78)80014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035405952
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1067/mob.2000.106594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019819665
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1136/bmj.312.7041.1254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062775836
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1148/radiology.143.1.7063747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082130998
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1148/radiology.148.3.6878708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082007470
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1385/jcd:6:3:247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028821017
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.413815.a schema:alternateName Changi General Hospital
192 schema:name Department of Geriatric Medicine, Changi General Hospital, Singapore
193 Elderly and Continuing Care Division, Ministry of Health, Singapore
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.413892.5 schema:alternateName Health Promotion Board
196 schema:name Adult Health Promotion Division, Health Promotion Board, Singapore
197 National Disease Registries Office, Research & Information Management Division, Health Promotion Board, 3 Second Hospital Avenue, 168937, Singapore, Singapore
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
200 schema:name Department of Community, Occupational and Family Medicine, National University of Singapore, Singapore
201 National Disease Registries Office, Research & Information Management Division, Health Promotion Board, 3 Second Hospital Avenue, 168937, Singapore, Singapore
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...