Ontology type: schema:ScholarlyArticle
1997-02
AUTHORSS.V. Kulikov
ABSTRACTStudies of translational nonequilibrium in the front of a shock wave propagating in a three-component gas were performed by the Monte Carlo simulation method. Simulations were performed for mixtures of components with molecular mass ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_3 /m_1 =80$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $3\le m_2 /m_1 \le 60$\end{document} and shock Mach number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document}. The distribution of relative velocities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} for pairs of molecules of heavy low-concentration additives 2 and 3 substantially exceeded, in the front, its equilibrium values behind the wave at high values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document}. The maximum value of this superequilibrium was about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $10^{11}$\end{document} for the numerical density ratio: 1000:1:1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_2 /m_1 =30$\end{document}. Calculations showed that high values of the effect of superequilibrium take place up to a ratio of densities 200:1:1. Simulations performed for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document} and a mixture of He, molecular oxygen and Xe with the numerical density ratio 200:1:1 showed also the high value of the superequilibrium effect at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} corresponding to dissociation threshold of oxygen. Thus, dissociation of oxygen by collisions with Xe in the front of a wave may have a considerably higher rate than total dissociation behind the wave. More... »
PAGES25-28
http://scigraph.springernature.com/pub.10.1007/s001930050058
DOIhttp://dx.doi.org/10.1007/s001930050058
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014475547
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Institute of Chemical Physics in Chernogolovka RAS, Chernogolovka 142432, Moscow region, Russia, RU"
],
"type": "Organization"
},
"familyName": "Kulikov",
"givenName": "S.V.",
"type": "Person"
}
],
"datePublished": "1997-02",
"datePublishedReg": "1997-02-01",
"description": "Studies of translational nonequilibrium in the front of a shock wave propagating in a three-component gas were performed by the Monte Carlo simulation method. Simulations were performed for mixtures of components with molecular mass ratios \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $m_3 /m_1 =80$\\end{document}, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $3\\le m_2 /m_1 \\le 60$\\end{document} and shock Mach number \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $M=4$\\end{document}. The distribution of relative velocities \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $g$\\end{document} for pairs of molecules of heavy low-concentration additives 2 and 3 substantially exceeded, in the front, its equilibrium values behind the wave at high values of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $g$\\end{document}. The maximum value of this superequilibrium was about \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $10^{11}$\\end{document} for the numerical density ratio: 1000:1:1 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $m_2 /m_1 =30$\\end{document}. Calculations showed that high values of the effect of superequilibrium take place up to a ratio of densities 200:1:1. Simulations performed for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $M=4$\\end{document} and a mixture of He, molecular oxygen and Xe with the numerical density ratio 200:1:1 showed also the high value of the superequilibrium effect at \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $g$\\end{document} corresponding to dissociation threshold of oxygen. Thus, dissociation of oxygen by collisions with Xe in the front of a wave may have a considerably higher rate than total dissociation behind the wave.",
"genre": "research_article",
"id": "sg:pub.10.1007/s001930050058",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1128645",
"issn": [
"0938-1287",
"1432-2153"
],
"name": "Shock Waves",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "7"
}
],
"name": "Possibility of acceleration of the threshold processes for multi-component gas in the front of a shock wave",
"pagination": "25-28",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"44f66cf71ec80ae401163576092188e89eeeb71b3c5b6340c6a2f1f6d40fb90c"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s001930050058"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014475547"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s001930050058",
"https://app.dimensions.ai/details/publication/pub.1014475547"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T16:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000531.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs001930050058"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'
This table displays all metadata directly associated to this object as RDF triples.
59 TRIPLES
20 PREDICATES
27 URIs
19 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s001930050058 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0904 |
3 | ″ | schema:author | Nda733dbe73864eb5a2a07b22b6334758 |
4 | ″ | schema:datePublished | 1997-02 |
5 | ″ | schema:datePublishedReg | 1997-02-01 |
6 | ″ | schema:description | Studies of translational nonequilibrium in the front of a shock wave propagating in a three-component gas were performed by the Monte Carlo simulation method. Simulations were performed for mixtures of components with molecular mass ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_3 /m_1 =80$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $3\le m_2 /m_1 \le 60$\end{document} and shock Mach number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document}. The distribution of relative velocities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} for pairs of molecules of heavy low-concentration additives 2 and 3 substantially exceeded, in the front, its equilibrium values behind the wave at high values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document}. The maximum value of this superequilibrium was about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $10^{11}$\end{document} for the numerical density ratio: 1000:1:1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_2 /m_1 =30$\end{document}. Calculations showed that high values of the effect of superequilibrium take place up to a ratio of densities 200:1:1. Simulations performed for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document} and a mixture of He, molecular oxygen and Xe with the numerical density ratio 200:1:1 showed also the high value of the superequilibrium effect at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} corresponding to dissociation threshold of oxygen. Thus, dissociation of oxygen by collisions with Xe in the front of a wave may have a considerably higher rate than total dissociation behind the wave. |
7 | ″ | schema:genre | research_article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N90774d380dba4df78413d22655aa7328 |
11 | ″ | ″ | Na168b5650efc4d1c894d3ba5c2f9f90a |
12 | ″ | ″ | sg:journal.1128645 |
13 | ″ | schema:name | Possibility of acceleration of the threshold processes for multi-component gas in the front of a shock wave |
14 | ″ | schema:pagination | 25-28 |
15 | ″ | schema:productId | N00be27f4c1a84c5ab125b80bd8abe14d |
16 | ″ | ″ | N0560b84cd1484aa483d629f2a833775e |
17 | ″ | ″ | N528848bc19fa48ddbd6b57d9c60f7e7d |
18 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014475547 |
19 | ″ | ″ | https://doi.org/10.1007/s001930050058 |
20 | ″ | schema:sdDatePublished | 2019-04-10T16:46 |
21 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
22 | ″ | schema:sdPublisher | Na98e2f3e98f24e1fb72f52bd871af639 |
23 | ″ | schema:url | http://link.springer.com/10.1007%2Fs001930050058 |
24 | ″ | sgo:license | sg:explorer/license/ |
25 | ″ | sgo:sdDataset | articles |
26 | ″ | rdf:type | schema:ScholarlyArticle |
27 | N00be27f4c1a84c5ab125b80bd8abe14d | schema:name | doi |
28 | ″ | schema:value | 10.1007/s001930050058 |
29 | ″ | rdf:type | schema:PropertyValue |
30 | N0560b84cd1484aa483d629f2a833775e | schema:name | readcube_id |
31 | ″ | schema:value | 44f66cf71ec80ae401163576092188e89eeeb71b3c5b6340c6a2f1f6d40fb90c |
32 | ″ | rdf:type | schema:PropertyValue |
33 | N3460a2f0f4e64ba3a63ad6df55ba9907 | schema:affiliation | Nfc837d96ee804888a5af692ebd467e96 |
34 | ″ | schema:familyName | Kulikov |
35 | ″ | schema:givenName | S.V. |
36 | ″ | rdf:type | schema:Person |
37 | N528848bc19fa48ddbd6b57d9c60f7e7d | schema:name | dimensions_id |
38 | ″ | schema:value | pub.1014475547 |
39 | ″ | rdf:type | schema:PropertyValue |
40 | N90774d380dba4df78413d22655aa7328 | schema:issueNumber | 1 |
41 | ″ | rdf:type | schema:PublicationIssue |
42 | Na168b5650efc4d1c894d3ba5c2f9f90a | schema:volumeNumber | 7 |
43 | ″ | rdf:type | schema:PublicationVolume |
44 | Na98e2f3e98f24e1fb72f52bd871af639 | schema:name | Springer Nature - SN SciGraph project |
45 | ″ | rdf:type | schema:Organization |
46 | Nda733dbe73864eb5a2a07b22b6334758 | rdf:first | N3460a2f0f4e64ba3a63ad6df55ba9907 |
47 | ″ | rdf:rest | rdf:nil |
48 | Nfc837d96ee804888a5af692ebd467e96 | schema:name | Institute of Chemical Physics in Chernogolovka RAS, Chernogolovka 142432, Moscow region, Russia, RU |
49 | ″ | rdf:type | schema:Organization |
50 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
51 | ″ | schema:name | Engineering |
52 | ″ | rdf:type | schema:DefinedTerm |
53 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
54 | ″ | schema:name | Chemical Engineering |
55 | ″ | rdf:type | schema:DefinedTerm |
56 | sg:journal.1128645 | schema:issn | 0938-1287 |
57 | ″ | ″ | 1432-2153 |
58 | ″ | schema:name | Shock Waves |
59 | ″ | rdf:type | schema:Periodical |