Possibility of acceleration of the threshold processes for multi-component gas in the front of a shock wave View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-02

AUTHORS

S.V. Kulikov

ABSTRACT

Studies of translational nonequilibrium in the front of a shock wave propagating in a three-component gas were performed by the Monte Carlo simulation method. Simulations were performed for mixtures of components with molecular mass ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_3 /m_1 =80$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $3\le m_2 /m_1 \le 60$\end{document} and shock Mach number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document}. The distribution of relative velocities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} for pairs of molecules of heavy low-concentration additives 2 and 3 substantially exceeded, in the front, its equilibrium values behind the wave at high values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document}. The maximum value of this superequilibrium was about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $10^{11}$\end{document} for the numerical density ratio: 1000:1:1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_2 /m_1 =30$\end{document}. Calculations showed that high values of the effect of superequilibrium take place up to a ratio of densities 200:1:1. Simulations performed for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document} and a mixture of He, molecular oxygen and Xe with the numerical density ratio 200:1:1 showed also the high value of the superequilibrium effect at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} corresponding to dissociation threshold of oxygen. Thus, dissociation of oxygen by collisions with Xe in the front of a wave may have a considerably higher rate than total dissociation behind the wave. More... »

PAGES

25-28

Journal

TITLE

Shock Waves

ISSUE

1

VOLUME

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001930050058

DOI

http://dx.doi.org/10.1007/s001930050058

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014475547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Chemical Physics in Chernogolovka RAS, Chernogolovka 142432, Moscow region, Russia, RU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "S.V.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-02", 
    "datePublishedReg": "1997-02-01", 
    "description": "Studies of translational nonequilibrium in the front of a shock wave propagating in a three-component gas were performed by the Monte Carlo simulation method. Simulations were performed for mixtures of components with molecular mass ratios \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $m_3 /m_1 =80$\\end{document}, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $3\\le m_2 /m_1 \\le 60$\\end{document} and shock Mach number \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $M=4$\\end{document}. The distribution of relative velocities \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $g$\\end{document} for pairs of molecules of heavy low-concentration additives 2 and 3 substantially exceeded, in the front, its equilibrium values behind the wave at high values of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $g$\\end{document}. The maximum value of this superequilibrium was about \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $10^{11}$\\end{document} for the numerical density ratio: 1000:1:1 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $m_2 /m_1 =30$\\end{document}. Calculations showed that high values of the effect of superequilibrium take place up to a ratio of densities 200:1:1. Simulations performed for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $M=4$\\end{document} and a mixture of He, molecular oxygen and Xe with the numerical density ratio 200:1:1 showed also the high value of the superequilibrium effect at \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $g$\\end{document} corresponding to dissociation threshold of oxygen. Thus, dissociation of oxygen by collisions with Xe in the front of a wave may have a considerably higher rate than total dissociation behind the wave.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001930050058", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1128645", 
        "issn": [
          "0938-1287", 
          "1432-2153"
        ], 
        "name": "Shock Waves", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Possibility of acceleration of the threshold processes for multi-component gas in the front of a shock wave", 
    "pagination": "25-28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44f66cf71ec80ae401163576092188e89eeeb71b3c5b6340c6a2f1f6d40fb90c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001930050058"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014475547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001930050058", 
      "https://app.dimensions.ai/details/publication/pub.1014475547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs001930050058"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001930050058'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001930050058 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nda733dbe73864eb5a2a07b22b6334758
4 schema:datePublished 1997-02
5 schema:datePublishedReg 1997-02-01
6 schema:description Studies of translational nonequilibrium in the front of a shock wave propagating in a three-component gas were performed by the Monte Carlo simulation method. Simulations were performed for mixtures of components with molecular mass ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_3 /m_1 =80$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $3\le m_2 /m_1 \le 60$\end{document} and shock Mach number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document}. The distribution of relative velocities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} for pairs of molecules of heavy low-concentration additives 2 and 3 substantially exceeded, in the front, its equilibrium values behind the wave at high values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document}. The maximum value of this superequilibrium was about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $10^{11}$\end{document} for the numerical density ratio: 1000:1:1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $m_2 /m_1 =30$\end{document}. Calculations showed that high values of the effect of superequilibrium take place up to a ratio of densities 200:1:1. Simulations performed for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M=4$\end{document} and a mixture of He, molecular oxygen and Xe with the numerical density ratio 200:1:1 showed also the high value of the superequilibrium effect at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $g$\end{document} corresponding to dissociation threshold of oxygen. Thus, dissociation of oxygen by collisions with Xe in the front of a wave may have a considerably higher rate than total dissociation behind the wave.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N90774d380dba4df78413d22655aa7328
11 Na168b5650efc4d1c894d3ba5c2f9f90a
12 sg:journal.1128645
13 schema:name Possibility of acceleration of the threshold processes for multi-component gas in the front of a shock wave
14 schema:pagination 25-28
15 schema:productId N00be27f4c1a84c5ab125b80bd8abe14d
16 N0560b84cd1484aa483d629f2a833775e
17 N528848bc19fa48ddbd6b57d9c60f7e7d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014475547
19 https://doi.org/10.1007/s001930050058
20 schema:sdDatePublished 2019-04-10T16:46
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na98e2f3e98f24e1fb72f52bd871af639
23 schema:url http://link.springer.com/10.1007%2Fs001930050058
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N00be27f4c1a84c5ab125b80bd8abe14d schema:name doi
28 schema:value 10.1007/s001930050058
29 rdf:type schema:PropertyValue
30 N0560b84cd1484aa483d629f2a833775e schema:name readcube_id
31 schema:value 44f66cf71ec80ae401163576092188e89eeeb71b3c5b6340c6a2f1f6d40fb90c
32 rdf:type schema:PropertyValue
33 N3460a2f0f4e64ba3a63ad6df55ba9907 schema:affiliation Nfc837d96ee804888a5af692ebd467e96
34 schema:familyName Kulikov
35 schema:givenName S.V.
36 rdf:type schema:Person
37 N528848bc19fa48ddbd6b57d9c60f7e7d schema:name dimensions_id
38 schema:value pub.1014475547
39 rdf:type schema:PropertyValue
40 N90774d380dba4df78413d22655aa7328 schema:issueNumber 1
41 rdf:type schema:PublicationIssue
42 Na168b5650efc4d1c894d3ba5c2f9f90a schema:volumeNumber 7
43 rdf:type schema:PublicationVolume
44 Na98e2f3e98f24e1fb72f52bd871af639 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nda733dbe73864eb5a2a07b22b6334758 rdf:first N3460a2f0f4e64ba3a63ad6df55ba9907
47 rdf:rest rdf:nil
48 Nfc837d96ee804888a5af692ebd467e96 schema:name Institute of Chemical Physics in Chernogolovka RAS, Chernogolovka 142432, Moscow region, Russia, RU
49 rdf:type schema:Organization
50 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
51 schema:name Engineering
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
54 schema:name Chemical Engineering
55 rdf:type schema:DefinedTerm
56 sg:journal.1128645 schema:issn 0938-1287
57 1432-2153
58 schema:name Shock Waves
59 rdf:type schema:Periodical
 




Preview window. Press ESC to close (or click here)


...