Measurement of O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D) formation during thermal decomposition of CO\documentclass[12pt]{minimal} \usepackage{amsmath} ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-07

AUTHORS

A.V. Eremin, D. Woiki, P. Roth

ABSTRACT

Atomic Resonance Absorption Spectroscopy (ARAS) was applied to measure the time dependent concentration of electronically excited O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D)-atoms during the thermal decomposition of CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document} behind reflected shock waves. The experiments were performed in the temperature range 4102 K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \le $\end{document} T \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \le $\end{document} 6375 K at pressures 0.2 to 1.9 bar with initial gas mixtures of 100 to 1000 ppm CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document} diluted in Ar. The measured O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D)-formation rate at early reaction times divided by the initial reactant concentrations was found to obey the Arrhenius law: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \beo &&\frac{d[{\rm O(^1D)}]/dt}{{\rm [CO_2]_0 \, [Ar]}} \Biggr|_{t \approx 0} \\ &&\quad = 1.23 \times 10^{14} \exp \left( -74810 {\rm K}/T \right){\rm cm^{3} mol^{-1} s^{-1}} \eeo \end{document} The assumption of a fast thermalisation between the O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^3$\end{document}P) and O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D) states is in agreement with previous measurements of the O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^3$\end{document}P) formation during the thermal decomposition of CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}, see Burmeister and Roth (1990). More... »

PAGES

79-83

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001930050023

DOI

http://dx.doi.org/10.1007/s001930050023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054512898


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Institut f\u00fcr Verbrennung und Gasdynamik, Universit\u00e4t Duisburg, D-47048 Duisburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A.V.", 
        "id": "sg:person.014424512265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Institut f\u00fcr Verbrennung und Gasdynamik, Universit\u00e4t Duisburg, D-47048 Duisburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woiki", 
        "givenName": "D.", 
        "id": "sg:person.07753173221.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07753173221.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Institut f\u00fcr Verbrennung und Gasdynamik, Universit\u00e4t Duisburg, D-47048 Duisburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "P.", 
        "id": "sg:person.013715314133.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013715314133.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996-07", 
    "datePublishedReg": "1996-07-01", 
    "description": "Atomic Resonance Absorption Spectroscopy (ARAS) was applied to measure the time dependent concentration of electronically excited O(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $^1$\\end{document}D)-atoms during the thermal decomposition of CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $_2$\\end{document} behind reflected shock waves. The experiments were performed in the temperature range 4102 K \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ \\le $\\end{document} T \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $ \\le $\\end{document} 6375 K at pressures 0.2 to 1.9 bar with initial gas mixtures of 100 to 1000 ppm CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $_2$\\end{document} diluted in Ar. The measured O(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $^1$\\end{document}D)-formation rate at early reaction times divided by the initial reactant concentrations was found to obey the Arrhenius law: \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\beo &&\\frac{d[{\\rm O(^1D)}]/dt}{{\\rm [CO_2]_0 \\, [Ar]}} \\Biggr|_{t \\approx 0} \\\\ &&\\quad = 1.23 \\times 10^{14} \\exp \\left( -74810 {\\rm K}/T \\right){\\rm cm^{3} mol^{-1} s^{-1}} \\eeo \\end{document} The assumption of a fast thermalisation between the O(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $^3$\\end{document}P) and O(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $^1$\\end{document}D) states is in agreement with previous measurements of the O(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $^3$\\end{document}P) formation during the thermal decomposition of CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $_2$\\end{document}, see Burmeister and Roth (1990).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001930050023", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1128645", 
        "issn": [
          "0938-1287", 
          "1432-2153"
        ], 
        "name": "Shock Waves", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Measurement of O(\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $^1$\\end{document}D) formation during thermal decomposition of CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $_2$\\end{document} behind shock waves", 
    "pagination": "79-83", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f25e3c15be0f3afe9384a7368f1a5fade03c813fdce9e803115d1cc608b50e4d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001930050023"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054512898"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001930050023", 
      "https://app.dimensions.ai/details/publication/pub.1054512898"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60347_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs001930050023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001930050023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001930050023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001930050023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001930050023'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001930050023 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N8b52fe5a7bc443b8ab8f255a88ccf061
4 schema:datePublished 1996-07
5 schema:datePublishedReg 1996-07-01
6 schema:description Atomic Resonance Absorption Spectroscopy (ARAS) was applied to measure the time dependent concentration of electronically excited O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D)-atoms during the thermal decomposition of CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document} behind reflected shock waves. The experiments were performed in the temperature range 4102 K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \le $\end{document} T \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \le $\end{document} 6375 K at pressures 0.2 to 1.9 bar with initial gas mixtures of 100 to 1000 ppm CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document} diluted in Ar. The measured O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D)-formation rate at early reaction times divided by the initial reactant concentrations was found to obey the Arrhenius law: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \beo &&\frac{d[{\rm O(^1D)}]/dt}{{\rm [CO_2]_0 \, [Ar]}} \Biggr|_{t \approx 0} \\ &&\quad = 1.23 \times 10^{14} \exp \left( -74810 {\rm K}/T \right){\rm cm^{3} mol^{-1} s^{-1}} \eeo \end{document} The assumption of a fast thermalisation between the O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^3$\end{document}P) and O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D) states is in agreement with previous measurements of the O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^3$\end{document}P) formation during the thermal decomposition of CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}, see Burmeister and Roth (1990).
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N06a31db85eca4b6c97e6344197200f59
11 N6f5213ec64f740399d3112fc6b2dac38
12 sg:journal.1128645
13 schema:name Measurement of O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^1$\end{document}D) formation during thermal decomposition of CO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document} behind shock waves
14 schema:pagination 79-83
15 schema:productId N2460c9d9e0014a388796ec5b9bbb2899
16 N424e29e0a287477f9397c66c2f3c1cd2
17 N8b94c34716684fec93247326b6587e5f
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054512898
19 https://doi.org/10.1007/s001930050023
20 schema:sdDatePublished 2019-04-11T11:01
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N64a18558d36f4841b3156ec628b4228b
23 schema:url https://link.springer.com/10.1007%2Fs001930050023
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N06a31db85eca4b6c97e6344197200f59 schema:issueNumber 2
28 rdf:type schema:PublicationIssue
29 N2460c9d9e0014a388796ec5b9bbb2899 schema:name doi
30 schema:value 10.1007/s001930050023
31 rdf:type schema:PropertyValue
32 N3539c762fab044f3be2a926aab77124f rdf:first sg:person.013715314133.03
33 rdf:rest rdf:nil
34 N424e29e0a287477f9397c66c2f3c1cd2 schema:name readcube_id
35 schema:value f25e3c15be0f3afe9384a7368f1a5fade03c813fdce9e803115d1cc608b50e4d
36 rdf:type schema:PropertyValue
37 N55ce4819990a4caf9d7067906e821cf5 rdf:first sg:person.07753173221.07
38 rdf:rest N3539c762fab044f3be2a926aab77124f
39 N64a18558d36f4841b3156ec628b4228b schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N6f5213ec64f740399d3112fc6b2dac38 schema:volumeNumber 6
42 rdf:type schema:PublicationVolume
43 N8b52fe5a7bc443b8ab8f255a88ccf061 rdf:first sg:person.014424512265.37
44 rdf:rest N55ce4819990a4caf9d7067906e821cf5
45 N8b94c34716684fec93247326b6587e5f schema:name dimensions_id
46 schema:value pub.1054512898
47 rdf:type schema:PropertyValue
48 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
49 schema:name Physical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
52 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
53 rdf:type schema:DefinedTerm
54 sg:journal.1128645 schema:issn 0938-1287
55 1432-2153
56 schema:name Shock Waves
57 rdf:type schema:Periodical
58 sg:person.013715314133.03 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
59 schema:familyName Roth
60 schema:givenName P.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013715314133.03
62 rdf:type schema:Person
63 sg:person.014424512265.37 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
64 schema:familyName Eremin
65 schema:givenName A.V.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
67 rdf:type schema:Person
68 sg:person.07753173221.07 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
69 schema:familyName Woiki
70 schema:givenName D.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07753173221.07
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.5718.b schema:alternateName University of Duisburg-Essen
74 schema:name Institut für Verbrennung und Gasdynamik, Universität Duisburg, D-47048 Duisburg, Germany, DE
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...