Sonic boom generated by a slender body aerodynamically shaded by a disk spike View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

A. V. Potapkin, D. Yu. Moskvichev

ABSTRACT

The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated. More... »

PAGES

1239-1249

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00193-018-0817-1

DOI

http://dx.doi.org/10.1007/s00193-018-0817-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101719475


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Applied Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.426168.f", 
          "name": [
            "ITAM SB RAS, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potapkin", 
        "givenName": "A. V.", 
        "id": "sg:person.013244152245.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013244152245.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Applied Mechanics", 
          "id": "https://www.grid.ac/institutes/grid.426168.f", 
          "name": [
            "ITAM SB RAS, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moskvichev", 
        "givenName": "D. Yu.", 
        "id": "sg:person.07751407244.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07751407244.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00193-014-0503-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006522783", 
          "https://doi.org/10.1007/s00193-014-0503-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2005-1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010568761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00193-013-0443-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012175642", 
          "https://doi.org/10.1007/s00193-013-0443-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160050305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019458452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2009-1056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026656340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021894411020027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041426671", 
          "https://doi.org/10.1134/s0021894411020027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.paerosci.2016.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050788170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j054581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052191526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-010586-4.50065-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052941045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112056000172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053814882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112056000172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053814882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112056000172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053814882"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00193-018-0817-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1128645", 
        "issn": [
          "0938-1287", 
          "1432-2153"
        ], 
        "name": "Shock Waves", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Sonic boom generated by a slender body aerodynamically shaded by a disk spike", 
    "pagination": "1239-1249", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4879bc031f438ddcc33ac1e2311238144405eb72710e7ca966b1f4e562427820"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00193-018-0817-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101719475"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00193-018-0817-1", 
      "https://app.dimensions.ai/details/publication/pub.1101719475"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72859_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00193-018-0817-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00193-018-0817-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00193-018-0817-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00193-018-0817-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00193-018-0817-1'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00193-018-0817-1 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N5ea1787a0ef14a2aad66c33882a64936
4 schema:citation sg:pub.10.1007/s00193-013-0443-x
5 sg:pub.10.1007/s00193-014-0503-x
6 sg:pub.10.1134/s0021894411020027
7 https://doi.org/10.1002/cpa.3160050305
8 https://doi.org/10.1016/b978-0-08-010586-4.50065-1
9 https://doi.org/10.1016/j.paerosci.2016.12.003
10 https://doi.org/10.1017/s0022112056000172
11 https://doi.org/10.2514/1.j054581
12 https://doi.org/10.2514/6.2005-1015
13 https://doi.org/10.2514/6.2009-1056
14 schema:datePublished 2018-11
15 schema:datePublishedReg 2018-11-01
16 schema:description The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N4578d9c421b94e2583baf47ff1db9e05
21 N9ee01fd799ce48ddb8ac3e1ab38cc0a3
22 sg:journal.1128645
23 schema:name Sonic boom generated by a slender body aerodynamically shaded by a disk spike
24 schema:pagination 1239-1249
25 schema:productId N35e15178f26a4c8599572c2f343125c7
26 Nf857ec1c93ed42f0a970fa0109302ce6
27 Nfba9cb3d43994c1eb3c2cc5060dc3760
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101719475
29 https://doi.org/10.1007/s00193-018-0817-1
30 schema:sdDatePublished 2019-04-11T12:54
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne576a42d898647be872d141bedf94088
33 schema:url https://link.springer.com/10.1007%2Fs00193-018-0817-1
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N35e15178f26a4c8599572c2f343125c7 schema:name readcube_id
38 schema:value 4879bc031f438ddcc33ac1e2311238144405eb72710e7ca966b1f4e562427820
39 rdf:type schema:PropertyValue
40 N452508adaa0c4365bd1e1122423fb7b3 rdf:first sg:person.07751407244.69
41 rdf:rest rdf:nil
42 N4578d9c421b94e2583baf47ff1db9e05 schema:volumeNumber 28
43 rdf:type schema:PublicationVolume
44 N5ea1787a0ef14a2aad66c33882a64936 rdf:first sg:person.013244152245.65
45 rdf:rest N452508adaa0c4365bd1e1122423fb7b3
46 N9ee01fd799ce48ddb8ac3e1ab38cc0a3 schema:issueNumber 6
47 rdf:type schema:PublicationIssue
48 Ne576a42d898647be872d141bedf94088 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nf857ec1c93ed42f0a970fa0109302ce6 schema:name doi
51 schema:value 10.1007/s00193-018-0817-1
52 rdf:type schema:PropertyValue
53 Nfba9cb3d43994c1eb3c2cc5060dc3760 schema:name dimensions_id
54 schema:value pub.1101719475
55 rdf:type schema:PropertyValue
56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
57 schema:name Engineering
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
60 schema:name Interdisciplinary Engineering
61 rdf:type schema:DefinedTerm
62 sg:journal.1128645 schema:issn 0938-1287
63 1432-2153
64 schema:name Shock Waves
65 rdf:type schema:Periodical
66 sg:person.013244152245.65 schema:affiliation https://www.grid.ac/institutes/grid.426168.f
67 schema:familyName Potapkin
68 schema:givenName A. V.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013244152245.65
70 rdf:type schema:Person
71 sg:person.07751407244.69 schema:affiliation https://www.grid.ac/institutes/grid.426168.f
72 schema:familyName Moskvichev
73 schema:givenName D. Yu.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07751407244.69
75 rdf:type schema:Person
76 sg:pub.10.1007/s00193-013-0443-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012175642
77 https://doi.org/10.1007/s00193-013-0443-x
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s00193-014-0503-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006522783
80 https://doi.org/10.1007/s00193-014-0503-x
81 rdf:type schema:CreativeWork
82 sg:pub.10.1134/s0021894411020027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041426671
83 https://doi.org/10.1134/s0021894411020027
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/cpa.3160050305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019458452
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/b978-0-08-010586-4.50065-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052941045
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.paerosci.2016.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050788170
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/s0022112056000172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053814882
92 rdf:type schema:CreativeWork
93 https://doi.org/10.2514/1.j054581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052191526
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2514/6.2005-1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010568761
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2514/6.2009-1056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026656340
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.426168.f schema:alternateName Institute of Theoretical and Applied Mechanics
100 schema:name ITAM SB RAS, 630090, Novosibirsk, Russia
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...