Numerical study of water mitigation effects on blast wave View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-11

AUTHORS

M. Cheng, K. C. Hung, O. Y. Chong

ABSTRACT

The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones–Wilkins–Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie–Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1–3 are found to be most practical. More... »

PAGES

217-223

References to SciGraph publications

  • 1985. Explosive Shocks in Air in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00193-005-0267-4

    DOI

    http://dx.doi.org/10.1007/s00193-005-0267-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013256956


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institute of High Performance Computing, 1 Science Park Road, 01-01 The Capricorn, Singapore Science Park II, 117528, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of High Performance Computing, 1 Science Park Road, 01-01 The Capricorn, Singapore Science Park II, 117528, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hung", 
            "givenName": "K. C.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Defence Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.453444.6", 
              "name": [
                "Defence Science and Technology Agency, 1 Depot Road 12-05, 109679, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chong", 
            "givenName": "O. Y.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1155/1998/782032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005535209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1009669865", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-86682-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009669865", 
              "https://doi.org/10.1007/978-3-642-86682-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-86682-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009669865", 
              "https://doi.org/10.1007/978-3-642-86682-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/1999/790873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040345634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/1997/615415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063202055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/2290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098862231"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-11", 
        "datePublishedReg": "2005-11-01", 
        "description": "The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones\u2013Wilkins\u2013Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie\u2013Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1\u20133 are found to be most practical.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00193-005-0267-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1128645", 
            "issn": [
              "0938-1287", 
              "1432-2153"
            ], 
            "name": "Shock Waves", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Numerical study of water mitigation effects on blast wave", 
        "pagination": "217-223", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3f27cf58be59336cbb32fa16ab02fcbc07ff7491c948661ecdff2fac6a807682"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00193-005-0267-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013256956"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00193-005-0267-4", 
          "https://app.dimensions.ai/details/publication/pub.1013256956"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000531.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00193-005-0267-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00193-005-0267-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00193-005-0267-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00193-005-0267-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00193-005-0267-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00193-005-0267-4 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nc5432478d0a148e4ab393103bc1fb2d7
    4 schema:citation sg:pub.10.1007/978-3-642-86682-1
    5 https://app.dimensions.ai/details/publication/pub.1009669865
    6 https://doi.org/10.1142/2290
    7 https://doi.org/10.1155/1997/615415
    8 https://doi.org/10.1155/1998/782032
    9 https://doi.org/10.1155/1999/790873
    10 schema:datePublished 2005-11
    11 schema:datePublishedReg 2005-11-01
    12 schema:description The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones–Wilkins–Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie–Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1–3 are found to be most practical.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Nadb414dee0cc4221a2e979d75b415adb
    17 Ne2d183ab2a39461e85b0d3491a561480
    18 sg:journal.1128645
    19 schema:name Numerical study of water mitigation effects on blast wave
    20 schema:pagination 217-223
    21 schema:productId N0332d1357c4a4ae5bd9603748d290844
    22 N42bf2f821fa842969e584929fdb32ed1
    23 N7d89688504154f36bba31fae94175a26
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013256956
    25 https://doi.org/10.1007/s00193-005-0267-4
    26 schema:sdDatePublished 2019-04-10T20:50
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Nf9d8a033301d4f3a9a64ee0b3909d4b3
    29 schema:url http://link.springer.com/10.1007%2Fs00193-005-0267-4
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N0332d1357c4a4ae5bd9603748d290844 schema:name doi
    34 schema:value 10.1007/s00193-005-0267-4
    35 rdf:type schema:PropertyValue
    36 N0fb9a9b4199447919552dc22f699e941 schema:affiliation N887315b7574c4298b113b73df3fb9813
    37 schema:familyName Cheng
    38 schema:givenName M.
    39 rdf:type schema:Person
    40 N265398e4ee92446ab4406b8367e49eb3 rdf:first N93a46bf83a954ce09ecf8ba1e95b5296
    41 rdf:rest N4a723be0ea134bea9fc2d212dfc6b704
    42 N42bf2f821fa842969e584929fdb32ed1 schema:name readcube_id
    43 schema:value 3f27cf58be59336cbb32fa16ab02fcbc07ff7491c948661ecdff2fac6a807682
    44 rdf:type schema:PropertyValue
    45 N4a723be0ea134bea9fc2d212dfc6b704 rdf:first N6aef5fda79db43e08b4b2dace8786571
    46 rdf:rest rdf:nil
    47 N6aef5fda79db43e08b4b2dace8786571 schema:affiliation https://www.grid.ac/institutes/grid.453444.6
    48 schema:familyName Chong
    49 schema:givenName O. Y.
    50 rdf:type schema:Person
    51 N7d89688504154f36bba31fae94175a26 schema:name dimensions_id
    52 schema:value pub.1013256956
    53 rdf:type schema:PropertyValue
    54 N887315b7574c4298b113b73df3fb9813 schema:name Institute of High Performance Computing, 1 Science Park Road, 01-01 The Capricorn, Singapore Science Park II, 117528, Singapore, Singapore
    55 rdf:type schema:Organization
    56 N93a46bf83a954ce09ecf8ba1e95b5296 schema:affiliation Nc870fc0e50584a178021dacd9845d9a3
    57 schema:familyName Hung
    58 schema:givenName K. C.
    59 rdf:type schema:Person
    60 Nadb414dee0cc4221a2e979d75b415adb schema:issueNumber 3
    61 rdf:type schema:PublicationIssue
    62 Nc5432478d0a148e4ab393103bc1fb2d7 rdf:first N0fb9a9b4199447919552dc22f699e941
    63 rdf:rest N265398e4ee92446ab4406b8367e49eb3
    64 Nc870fc0e50584a178021dacd9845d9a3 schema:name Institute of High Performance Computing, 1 Science Park Road, 01-01 The Capricorn, Singapore Science Park II, 117528, Singapore, Singapore
    65 rdf:type schema:Organization
    66 Ne2d183ab2a39461e85b0d3491a561480 schema:volumeNumber 14
    67 rdf:type schema:PublicationVolume
    68 Nf9d8a033301d4f3a9a64ee0b3909d4b3 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Engineering
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Interdisciplinary Engineering
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1128645 schema:issn 0938-1287
    77 1432-2153
    78 schema:name Shock Waves
    79 rdf:type schema:Periodical
    80 sg:pub.10.1007/978-3-642-86682-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009669865
    81 https://doi.org/10.1007/978-3-642-86682-1
    82 rdf:type schema:CreativeWork
    83 https://app.dimensions.ai/details/publication/pub.1009669865 schema:CreativeWork
    84 https://doi.org/10.1142/2290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098862231
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1155/1997/615415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063202055
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1155/1998/782032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005535209
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1155/1999/790873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040345634
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.453444.6 schema:alternateName Defence Science and Technology Agency
    93 schema:name Defence Science and Technology Agency, 1 Depot Road 12-05, 109679, Singapore, Singapore
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...