Possible improvement of Earth orientation forecast using autocovariance prediction procedures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-04

AUTHORS

W. Kosek, D. D. McCarthy, B. J. Luzum

ABSTRACT

. Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3 years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200 days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100–140 days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals. More... »

PAGES

189-199

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001900050160

DOI

http://dx.doi.org/10.1007/s001900050160

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029209225


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273;  e-mail: kosek@cbk.waw.pl, PL", 
          "id": "http://www.grid.ac/institutes/grid.423929.7", 
          "name": [
            "Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273;  e-mail: kosek@cbk.waw.pl, PL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosek", 
        "givenName": "W.", 
        "id": "sg:person.016673725226.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673725226.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Observatory, Washington, D.C., USA, US", 
          "id": "http://www.grid.ac/institutes/grid.440354.2", 
          "name": [
            "United States Naval Observatory, Washington, D.C., USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCarthy", 
        "givenName": "D. D.", 
        "id": "sg:person.013045417717.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Observatory, Washington, D.C., USA, US", 
          "id": "http://www.grid.ac/institutes/grid.440354.2", 
          "name": [
            "United States Naval Observatory, Washington, D.C., USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luzum", 
        "givenName": "B. J.", 
        "id": "sg:person.013425367265.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-04", 
    "datePublishedReg": "1998-04-01", 
    "description": "Abstract.\u2002Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3\u2009years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200\u2009days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100\u2013140\u2009days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s001900050160", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052480", 
        "issn": [
          "0949-7714", 
          "1432-1394"
        ], 
        "name": "Journal of Geodesy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "keywords": [
      "time variable spectra", 
      "polar motion", 
      "irregular variations", 
      "atmospheric angular momentum", 
      "atmospheric excitation functions", 
      "UT1-UTC data", 
      "short-period variations", 
      "Environmental Prediction", 
      "different prediction lengths", 
      "maxima coincide", 
      "equatorial components", 
      "UT1-UTC predictions", 
      "UT1-UTC", 
      "National Center", 
      "years of observation", 
      "motion prediction error", 
      "current prediction models", 
      "prediction model", 
      "variation", 
      "prediction length", 
      "poles", 
      "residuals", 
      "forecasts", 
      "prediction error", 
      "prediction", 
      "extrapolation model", 
      "oscillations", 
      "data", 
      "epoch", 
      "coincide", 
      "prediction procedure", 
      "motion", 
      "model", 
      "error", 
      "period", 
      "ellipses", 
      "predictable effects", 
      "prediction method", 
      "bias", 
      "angular momentum", 
      "possible improvements", 
      "respect", 
      "coherence", 
      "years", 
      "components", 
      "momentum", 
      "center", 
      "days", 
      "excitation functions", 
      "spectra", 
      "results", 
      "accuracy", 
      "sum", 
      "possibility", 
      "length", 
      "excitation", 
      "effect", 
      "subtraction", 
      "circle", 
      "method", 
      "function", 
      "improvement", 
      "observations", 
      "procedure"
    ], 
    "name": "Possible improvement of Earth orientation forecast using autocovariance prediction procedures", 
    "pagination": "189-199", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029209225"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001900050160"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001900050160", 
      "https://app.dimensions.ai/details/publication/pub.1029209225"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_275.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s001900050160"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      94 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001900050160 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:04
4 anzsrc-for:0404
5 anzsrc-for:09
6 anzsrc-for:0909
7 schema:author Na2f6ffcf730f47e6bc7cf5dbeb2e985a
8 schema:datePublished 1998-04
9 schema:datePublishedReg 1998-04-01
10 schema:description Abstract. Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3 years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200 days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100–140 days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N38c6af0c2d1f48e0896a1fdad7680a56
15 N8d8daac6ecf24e92bd6ec0ded4a45ec3
16 sg:journal.1052480
17 schema:keywords Environmental Prediction
18 National Center
19 UT1-UTC
20 UT1-UTC data
21 UT1-UTC predictions
22 accuracy
23 angular momentum
24 atmospheric angular momentum
25 atmospheric excitation functions
26 bias
27 center
28 circle
29 coherence
30 coincide
31 components
32 current prediction models
33 data
34 days
35 different prediction lengths
36 effect
37 ellipses
38 epoch
39 equatorial components
40 error
41 excitation
42 excitation functions
43 extrapolation model
44 forecasts
45 function
46 improvement
47 irregular variations
48 length
49 maxima coincide
50 method
51 model
52 momentum
53 motion
54 motion prediction error
55 observations
56 oscillations
57 period
58 polar motion
59 poles
60 possibility
61 possible improvements
62 predictable effects
63 prediction
64 prediction error
65 prediction length
66 prediction method
67 prediction model
68 prediction procedure
69 procedure
70 residuals
71 respect
72 results
73 short-period variations
74 spectra
75 subtraction
76 sum
77 time variable spectra
78 variation
79 years
80 years of observation
81 schema:name Possible improvement of Earth orientation forecast using autocovariance prediction procedures
82 schema:pagination 189-199
83 schema:productId N47383ee110d641cda245b485e183fbf1
84 Nb622e38d89b4471ca5c801b55d228525
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029209225
86 https://doi.org/10.1007/s001900050160
87 schema:sdDatePublished 2022-05-20T07:20
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Na4149c83f84149399a59cd07ed675ac4
90 schema:url https://doi.org/10.1007/s001900050160
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N1f637f3a1143494db6a4c242fcd6b58e rdf:first sg:person.013045417717.11
95 rdf:rest Ne279ef664126404db336fe1bd2dd6fae
96 N38c6af0c2d1f48e0896a1fdad7680a56 schema:issueNumber 4
97 rdf:type schema:PublicationIssue
98 N47383ee110d641cda245b485e183fbf1 schema:name dimensions_id
99 schema:value pub.1029209225
100 rdf:type schema:PropertyValue
101 N8d8daac6ecf24e92bd6ec0ded4a45ec3 schema:volumeNumber 72
102 rdf:type schema:PublicationVolume
103 Na2f6ffcf730f47e6bc7cf5dbeb2e985a rdf:first sg:person.016673725226.31
104 rdf:rest N1f637f3a1143494db6a4c242fcd6b58e
105 Na4149c83f84149399a59cd07ed675ac4 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nb622e38d89b4471ca5c801b55d228525 schema:name doi
108 schema:value 10.1007/s001900050160
109 rdf:type schema:PropertyValue
110 Ne279ef664126404db336fe1bd2dd6fae rdf:first sg:person.013425367265.29
111 rdf:rest rdf:nil
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
116 schema:name Applied Mathematics
117 rdf:type schema:DefinedTerm
118 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
119 schema:name Earth Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
122 schema:name Geophysics
123 rdf:type schema:DefinedTerm
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
128 schema:name Geomatic Engineering
129 rdf:type schema:DefinedTerm
130 sg:journal.1052480 schema:issn 0949-7714
131 1432-1394
132 schema:name Journal of Geodesy
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.013045417717.11 schema:affiliation grid-institutes:grid.440354.2
136 schema:familyName McCarthy
137 schema:givenName D. D.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11
139 rdf:type schema:Person
140 sg:person.013425367265.29 schema:affiliation grid-institutes:grid.440354.2
141 schema:familyName Luzum
142 schema:givenName B. J.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29
144 rdf:type schema:Person
145 sg:person.016673725226.31 schema:affiliation grid-institutes:grid.423929.7
146 schema:familyName Kosek
147 schema:givenName W.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673725226.31
149 rdf:type schema:Person
150 grid-institutes:grid.423929.7 schema:alternateName Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273; e-mail: kosek@cbk.waw.pl, PL
151 schema:name Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273; e-mail: kosek@cbk.waw.pl, PL
152 rdf:type schema:Organization
153 grid-institutes:grid.440354.2 schema:alternateName United States Naval Observatory, Washington, D.C., USA, US
154 schema:name United States Naval Observatory, Washington, D.C., USA, US
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...