Ontology type: schema:ScholarlyArticle
1998-04
AUTHORSW. Kosek, D. D. McCarthy, B. J. Luzum
ABSTRACT. Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3 years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200 days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100–140 days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals. More... »
PAGES189-199
http://scigraph.springernature.com/pub.10.1007/s001900050160
DOIhttp://dx.doi.org/10.1007/s001900050160
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029209225
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geophysics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geomatic Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273; e-mail: kosek@cbk.waw.pl, PL",
"id": "http://www.grid.ac/institutes/grid.423929.7",
"name": [
"Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273; e-mail: kosek@cbk.waw.pl, PL"
],
"type": "Organization"
},
"familyName": "Kosek",
"givenName": "W.",
"id": "sg:person.016673725226.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673725226.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "United States Naval Observatory, Washington, D.C., USA, US",
"id": "http://www.grid.ac/institutes/grid.440354.2",
"name": [
"United States Naval Observatory, Washington, D.C., USA, US"
],
"type": "Organization"
},
"familyName": "McCarthy",
"givenName": "D. D.",
"id": "sg:person.013045417717.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "United States Naval Observatory, Washington, D.C., USA, US",
"id": "http://www.grid.ac/institutes/grid.440354.2",
"name": [
"United States Naval Observatory, Washington, D.C., USA, US"
],
"type": "Organization"
},
"familyName": "Luzum",
"givenName": "B. J.",
"id": "sg:person.013425367265.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29"
],
"type": "Person"
}
],
"datePublished": "1998-04",
"datePublishedReg": "1998-04-01",
"description": "Abstract.\u2002Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3\u2009years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200\u2009days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100\u2013140\u2009days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals.",
"genre": "article",
"id": "sg:pub.10.1007/s001900050160",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1052480",
"issn": [
"0949-7714",
"1432-1394"
],
"name": "Journal of Geodesy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "72"
}
],
"keywords": [
"time variable spectra",
"polar motion",
"irregular variations",
"atmospheric angular momentum",
"atmospheric excitation functions",
"UT1-UTC data",
"short-period variations",
"Environmental Prediction",
"different prediction lengths",
"maxima coincide",
"equatorial components",
"UT1-UTC predictions",
"UT1-UTC",
"National Center",
"years of observation",
"motion prediction error",
"current prediction models",
"prediction model",
"variation",
"prediction length",
"poles",
"residuals",
"forecasts",
"prediction error",
"prediction",
"extrapolation model",
"oscillations",
"data",
"epoch",
"coincide",
"prediction procedure",
"motion",
"model",
"error",
"period",
"ellipses",
"predictable effects",
"prediction method",
"bias",
"angular momentum",
"possible improvements",
"respect",
"coherence",
"years",
"components",
"momentum",
"center",
"days",
"excitation functions",
"spectra",
"results",
"accuracy",
"sum",
"possibility",
"length",
"excitation",
"effect",
"subtraction",
"circle",
"method",
"function",
"improvement",
"observations",
"procedure"
],
"name": "Possible improvement of Earth orientation forecast using autocovariance prediction procedures",
"pagination": "189-199",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029209225"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s001900050160"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s001900050160",
"https://app.dimensions.ai/details/publication/pub.1029209225"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_275.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s001900050160"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001900050160'
This table displays all metadata directly associated to this object as RDF triples.
155 TRIPLES
21 PREDICATES
94 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s001900050160 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | ″ | anzsrc-for:04 |
4 | ″ | ″ | anzsrc-for:0404 |
5 | ″ | ″ | anzsrc-for:09 |
6 | ″ | ″ | anzsrc-for:0909 |
7 | ″ | schema:author | Na2f6ffcf730f47e6bc7cf5dbeb2e985a |
8 | ″ | schema:datePublished | 1998-04 |
9 | ″ | schema:datePublishedReg | 1998-04-01 |
10 | ″ | schema:description | Abstract. Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3 years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200 days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100–140 days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N38c6af0c2d1f48e0896a1fdad7680a56 |
15 | ″ | ″ | N8d8daac6ecf24e92bd6ec0ded4a45ec3 |
16 | ″ | ″ | sg:journal.1052480 |
17 | ″ | schema:keywords | Environmental Prediction |
18 | ″ | ″ | National Center |
19 | ″ | ″ | UT1-UTC |
20 | ″ | ″ | UT1-UTC data |
21 | ″ | ″ | UT1-UTC predictions |
22 | ″ | ″ | accuracy |
23 | ″ | ″ | angular momentum |
24 | ″ | ″ | atmospheric angular momentum |
25 | ″ | ″ | atmospheric excitation functions |
26 | ″ | ″ | bias |
27 | ″ | ″ | center |
28 | ″ | ″ | circle |
29 | ″ | ″ | coherence |
30 | ″ | ″ | coincide |
31 | ″ | ″ | components |
32 | ″ | ″ | current prediction models |
33 | ″ | ″ | data |
34 | ″ | ″ | days |
35 | ″ | ″ | different prediction lengths |
36 | ″ | ″ | effect |
37 | ″ | ″ | ellipses |
38 | ″ | ″ | epoch |
39 | ″ | ″ | equatorial components |
40 | ″ | ″ | error |
41 | ″ | ″ | excitation |
42 | ″ | ″ | excitation functions |
43 | ″ | ″ | extrapolation model |
44 | ″ | ″ | forecasts |
45 | ″ | ″ | function |
46 | ″ | ″ | improvement |
47 | ″ | ″ | irregular variations |
48 | ″ | ″ | length |
49 | ″ | ″ | maxima coincide |
50 | ″ | ″ | method |
51 | ″ | ″ | model |
52 | ″ | ″ | momentum |
53 | ″ | ″ | motion |
54 | ″ | ″ | motion prediction error |
55 | ″ | ″ | observations |
56 | ″ | ″ | oscillations |
57 | ″ | ″ | period |
58 | ″ | ″ | polar motion |
59 | ″ | ″ | poles |
60 | ″ | ″ | possibility |
61 | ″ | ″ | possible improvements |
62 | ″ | ″ | predictable effects |
63 | ″ | ″ | prediction |
64 | ″ | ″ | prediction error |
65 | ″ | ″ | prediction length |
66 | ″ | ″ | prediction method |
67 | ″ | ″ | prediction model |
68 | ″ | ″ | prediction procedure |
69 | ″ | ″ | procedure |
70 | ″ | ″ | residuals |
71 | ″ | ″ | respect |
72 | ″ | ″ | results |
73 | ″ | ″ | short-period variations |
74 | ″ | ″ | spectra |
75 | ″ | ″ | subtraction |
76 | ″ | ″ | sum |
77 | ″ | ″ | time variable spectra |
78 | ″ | ″ | variation |
79 | ″ | ″ | years |
80 | ″ | ″ | years of observation |
81 | ″ | schema:name | Possible improvement of Earth orientation forecast using autocovariance prediction procedures |
82 | ″ | schema:pagination | 189-199 |
83 | ″ | schema:productId | N47383ee110d641cda245b485e183fbf1 |
84 | ″ | ″ | Nb622e38d89b4471ca5c801b55d228525 |
85 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029209225 |
86 | ″ | ″ | https://doi.org/10.1007/s001900050160 |
87 | ″ | schema:sdDatePublished | 2022-05-20T07:20 |
88 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
89 | ″ | schema:sdPublisher | Na4149c83f84149399a59cd07ed675ac4 |
90 | ″ | schema:url | https://doi.org/10.1007/s001900050160 |
91 | ″ | sgo:license | sg:explorer/license/ |
92 | ″ | sgo:sdDataset | articles |
93 | ″ | rdf:type | schema:ScholarlyArticle |
94 | N1f637f3a1143494db6a4c242fcd6b58e | rdf:first | sg:person.013045417717.11 |
95 | ″ | rdf:rest | Ne279ef664126404db336fe1bd2dd6fae |
96 | N38c6af0c2d1f48e0896a1fdad7680a56 | schema:issueNumber | 4 |
97 | ″ | rdf:type | schema:PublicationIssue |
98 | N47383ee110d641cda245b485e183fbf1 | schema:name | dimensions_id |
99 | ″ | schema:value | pub.1029209225 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | N8d8daac6ecf24e92bd6ec0ded4a45ec3 | schema:volumeNumber | 72 |
102 | ″ | rdf:type | schema:PublicationVolume |
103 | Na2f6ffcf730f47e6bc7cf5dbeb2e985a | rdf:first | sg:person.016673725226.31 |
104 | ″ | rdf:rest | N1f637f3a1143494db6a4c242fcd6b58e |
105 | Na4149c83f84149399a59cd07ed675ac4 | schema:name | Springer Nature - SN SciGraph project |
106 | ″ | rdf:type | schema:Organization |
107 | Nb622e38d89b4471ca5c801b55d228525 | schema:name | doi |
108 | ″ | schema:value | 10.1007/s001900050160 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | Ne279ef664126404db336fe1bd2dd6fae | rdf:first | sg:person.013425367265.29 |
111 | ″ | rdf:rest | rdf:nil |
112 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Mathematical Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Applied Mathematics |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Earth Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:0404 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Geophysics |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Engineering |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0909 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Geomatic Engineering |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | sg:journal.1052480 | schema:issn | 0949-7714 |
131 | ″ | ″ | 1432-1394 |
132 | ″ | schema:name | Journal of Geodesy |
133 | ″ | schema:publisher | Springer Nature |
134 | ″ | rdf:type | schema:Periodical |
135 | sg:person.013045417717.11 | schema:affiliation | grid-institutes:grid.440354.2 |
136 | ″ | schema:familyName | McCarthy |
137 | ″ | schema:givenName | D. D. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013045417717.11 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.013425367265.29 | schema:affiliation | grid-institutes:grid.440354.2 |
141 | ″ | schema:familyName | Luzum |
142 | ″ | schema:givenName | B. J. |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425367265.29 |
144 | ″ | rdf:type | schema:Person |
145 | sg:person.016673725226.31 | schema:affiliation | grid-institutes:grid.423929.7 |
146 | ″ | schema:familyName | Kosek |
147 | ″ | schema:givenName | W. |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673725226.31 |
149 | ″ | rdf:type | schema:Person |
150 | grid-institutes:grid.423929.7 | schema:alternateName | Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273; e-mail: kosek@cbk.waw.pl, PL |
151 | ″ | schema:name | Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland Tel: +48 22 403766; Fax: +48 39 121273; e-mail: kosek@cbk.waw.pl, PL |
152 | ″ | rdf:type | schema:Organization |
153 | grid-institutes:grid.440354.2 | schema:alternateName | United States Naval Observatory, Washington, D.C., USA, US |
154 | ″ | schema:name | United States Naval Observatory, Washington, D.C., USA, US |
155 | ″ | rdf:type | schema:Organization |