Processing of laser altimeter time-of-flight measurements to geodetic coordinates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-02

AUTHORS

Haifeng Xiao, Alexander Stark, Gregor Steinbrügge, Hauke Hussmann, Jürgen Oberst

ABSTRACT

Laser altimeters are commonly used in planetary research for their high geodetic accuracy. A key procedure in processing of laser altimeter data is the geolocation. In this process, the time-of-flight measurements are converted to coordinates of laser pulse footprints on the surface of the target body. Here, we present a consistent and systematic formulation of three commonly used geolocation models with increasing complexity: static model, spacecraft motion model, pointing aberration model and special relativity model. We show that for small velocities of the spacecraft relative to the target the special relativity model can be reduced to the pointing aberration model without significant loss in the geolocation accuracy. We then discuss the respective accuracies of the proposed models and apply them to time-of-flight measurements from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor (MGS) spacecraft and the Mercury Laser Altimeter (MLA) onboard the MErcury Surface, Space ENvironment, GEochemistry and Ranging spacecraft (MESSENGER). While, the archived datasets had not considered the effect of pointing aberration, we demonstrate that a correction due to pointing aberration makes insignificant improvements of 4–5 m laterally and up to ± 3 cm radially for MOLA profiles, these figures enormously increase to up to about 150 m laterally and ± 25 m radially when applied to the MLA orbital profiles. More... »

PAGES

22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00190-020-01467-4

DOI

http://dx.doi.org/10.1007/s00190-020-01467-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135061690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Geodesy and Geoinformation Science, Technische Universit\u00e4t Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institute of Geodesy and Geoinformation Science, Technische Universit\u00e4t Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Haifeng", 
        "id": "sg:person.016522654634.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522654634.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stark", 
        "givenName": "Alexander", 
        "id": "sg:person.016143566315.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143566315.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geophysics, Stanford University, Stanford, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Geophysics, Stanford University, Stanford, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinbr\u00fcgge", 
        "givenName": "Gregor", 
        "id": "sg:person.07453771523.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453771523.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussmann", 
        "givenName": "Hauke", 
        "id": "sg:person.014476374441.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476374441.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "Institute of Geodesy and Geoinformation Science, Technische Universit\u00e4t Berlin, Berlin, Germany", 
            "Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberst", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.0642304505.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11214-015-0231-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035779258", 
          "https://doi.org/10.1007/s11214-015-0231-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-017-9805-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101168402", 
          "https://doi.org/10.1007/s10569-017-9805-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12567-019-00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121963765", 
          "https://doi.org/10.1007/s12567-019-00282-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10686-010-9199-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030217573", 
          "https://doi.org/10.1007/s10686-010-9199-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-010-0379-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053664636", 
          "https://doi.org/10.1007/s00190-010-0379-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12567-019-00270-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120309601", 
          "https://doi.org/10.1007/s12567-019-00270-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-017-0440-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093059337", 
          "https://doi.org/10.1007/s11214-017-0440-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-017-0375-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090939438", 
          "https://doi.org/10.1007/s11214-017-0375-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep45629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084508642", 
          "https://doi.org/10.1038/srep45629"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-02", 
    "datePublishedReg": "2021-02-02", 
    "description": "Laser altimeters are commonly used in planetary research for their high geodetic accuracy. A key procedure in processing of laser altimeter data is the geolocation. In this process, the time-of-flight measurements are converted to coordinates of laser pulse footprints on the surface of the target body. Here, we present a consistent and systematic formulation of three commonly used geolocation models with increasing complexity: static model, spacecraft motion model, pointing aberration model and special relativity model. We show that for small velocities of the spacecraft relative to the target the special relativity model can be reduced to the pointing aberration model without significant loss in the geolocation accuracy. We then discuss the respective accuracies of the proposed models and apply them to time-of-flight measurements from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor (MGS) spacecraft and the Mercury Laser Altimeter (MLA) onboard the MErcury Surface, Space ENvironment, GEochemistry and Ranging spacecraft (MESSENGER). While, the archived datasets had not considered the effect of pointing aberration, we demonstrate that a correction due to pointing aberration makes insignificant improvements of 4\u20135\u00a0m laterally and up to \u00b1\u00a03\u00a0cm radially for MOLA profiles, these figures enormously increase to up to about 150\u00a0m laterally and \u00b1\u00a025\u00a0m radially when applied to the MLA orbital profiles.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00190-020-01467-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052480", 
        "issn": [
          "0949-7714", 
          "1432-1394"
        ], 
        "name": "Journal of Geodesy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "keywords": [
      "special relativity model", 
      "Mercury Laser Altimeter", 
      "flight measurements", 
      "relativity model", 
      "laser altimeter", 
      "Mars Orbiter Laser Altimeter", 
      "aberration model", 
      "Mars Global Surveyor spacecraft", 
      "planetary research", 
      "space environment", 
      "mercury surface", 
      "Surveyor spacecraft", 
      "spacecraft", 
      "small velocities", 
      "orbital profiles", 
      "laser altimeter data", 
      "geodetic accuracy", 
      "geodetic coordinates", 
      "geolocation accuracy", 
      "altimeter", 
      "target body", 
      "altimeter data", 
      "motion model", 
      "measurements", 
      "MOLA profiles", 
      "coordinates", 
      "geolocation model", 
      "surface", 
      "static model", 
      "aberrations", 
      "key procedure", 
      "accuracy", 
      "systematic formulation", 
      "processing", 
      "respective accuracies", 
      "velocity", 
      "correction", 
      "model", 
      "profile", 
      "footprint", 
      "significant loss", 
      "formulation", 
      "insignificant improvement", 
      "time", 
      "geolocation", 
      "process", 
      "improvement", 
      "target", 
      "environment", 
      "figures", 
      "loss", 
      "effect", 
      "procedure", 
      "complexity", 
      "data", 
      "body", 
      "research", 
      "dataset", 
      "geochemistry"
    ], 
    "name": "Processing of laser altimeter time-of-flight measurements to geodetic coordinates", 
    "pagination": "22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135061690"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00190-020-01467-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00190-020-01467-4", 
      "https://app.dimensions.ai/details/publication/pub.1135061690"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_897.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00190-020-01467-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00190-020-01467-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00190-020-01467-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00190-020-01467-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00190-020-01467-4'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      22 PREDICATES      97 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00190-020-01467-4 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:04
4 anzsrc-for:0404
5 anzsrc-for:09
6 anzsrc-for:0909
7 schema:author N63c34cebd13e47089ef0e5e44dcf6cee
8 schema:citation sg:pub.10.1007/s00190-010-0379-1
9 sg:pub.10.1007/s10569-017-9805-5
10 sg:pub.10.1007/s10686-010-9199-9
11 sg:pub.10.1007/s11214-015-0231-2
12 sg:pub.10.1007/s11214-017-0375-3
13 sg:pub.10.1007/s11214-017-0440-y
14 sg:pub.10.1007/s12567-019-00270-y
15 sg:pub.10.1007/s12567-019-00282-8
16 sg:pub.10.1038/srep45629
17 schema:datePublished 2021-02-02
18 schema:datePublishedReg 2021-02-02
19 schema:description Laser altimeters are commonly used in planetary research for their high geodetic accuracy. A key procedure in processing of laser altimeter data is the geolocation. In this process, the time-of-flight measurements are converted to coordinates of laser pulse footprints on the surface of the target body. Here, we present a consistent and systematic formulation of three commonly used geolocation models with increasing complexity: static model, spacecraft motion model, pointing aberration model and special relativity model. We show that for small velocities of the spacecraft relative to the target the special relativity model can be reduced to the pointing aberration model without significant loss in the geolocation accuracy. We then discuss the respective accuracies of the proposed models and apply them to time-of-flight measurements from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor (MGS) spacecraft and the Mercury Laser Altimeter (MLA) onboard the MErcury Surface, Space ENvironment, GEochemistry and Ranging spacecraft (MESSENGER). While, the archived datasets had not considered the effect of pointing aberration, we demonstrate that a correction due to pointing aberration makes insignificant improvements of 4–5 m laterally and up to ± 3 cm radially for MOLA profiles, these figures enormously increase to up to about 150 m laterally and ± 25 m radially when applied to the MLA orbital profiles.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N6e70ef6790dd463699e6ce99916e7d38
24 Nd94b6343d9054caeb60fd17f86c2ff2c
25 sg:journal.1052480
26 schema:keywords MOLA profiles
27 Mars Global Surveyor spacecraft
28 Mars Orbiter Laser Altimeter
29 Mercury Laser Altimeter
30 Surveyor spacecraft
31 aberration model
32 aberrations
33 accuracy
34 altimeter
35 altimeter data
36 body
37 complexity
38 coordinates
39 correction
40 data
41 dataset
42 effect
43 environment
44 figures
45 flight measurements
46 footprint
47 formulation
48 geochemistry
49 geodetic accuracy
50 geodetic coordinates
51 geolocation
52 geolocation accuracy
53 geolocation model
54 improvement
55 insignificant improvement
56 key procedure
57 laser altimeter
58 laser altimeter data
59 loss
60 measurements
61 mercury surface
62 model
63 motion model
64 orbital profiles
65 planetary research
66 procedure
67 process
68 processing
69 profile
70 relativity model
71 research
72 respective accuracies
73 significant loss
74 small velocities
75 space environment
76 spacecraft
77 special relativity model
78 static model
79 surface
80 systematic formulation
81 target
82 target body
83 time
84 velocity
85 schema:name Processing of laser altimeter time-of-flight measurements to geodetic coordinates
86 schema:pagination 22
87 schema:productId N817c8b412f654d1cba99e03be6e0db94
88 Na3f22a0ad1c54356bad04d0d27274950
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135061690
90 https://doi.org/10.1007/s00190-020-01467-4
91 schema:sdDatePublished 2022-05-20T07:39
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N3126e74fa2e647d880a07e5a645bd235
94 schema:url https://doi.org/10.1007/s00190-020-01467-4
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N1a1d5ab0759d4863a4486efd4ae1b756 rdf:first sg:person.07453771523.50
99 rdf:rest Nd2bc12d099644871ab0318d395f1f1ab
100 N3126e74fa2e647d880a07e5a645bd235 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N63c34cebd13e47089ef0e5e44dcf6cee rdf:first sg:person.016522654634.94
103 rdf:rest N7756cdea39104792b5bb38dc985cea0d
104 N6e70ef6790dd463699e6ce99916e7d38 schema:volumeNumber 95
105 rdf:type schema:PublicationVolume
106 N7756cdea39104792b5bb38dc985cea0d rdf:first sg:person.016143566315.57
107 rdf:rest N1a1d5ab0759d4863a4486efd4ae1b756
108 N7a66cb3082314cd680589e94c846e99f rdf:first sg:person.0642304505.83
109 rdf:rest rdf:nil
110 N817c8b412f654d1cba99e03be6e0db94 schema:name doi
111 schema:value 10.1007/s00190-020-01467-4
112 rdf:type schema:PropertyValue
113 Na3f22a0ad1c54356bad04d0d27274950 schema:name dimensions_id
114 schema:value pub.1135061690
115 rdf:type schema:PropertyValue
116 Nd2bc12d099644871ab0318d395f1f1ab rdf:first sg:person.014476374441.74
117 rdf:rest N7a66cb3082314cd680589e94c846e99f
118 Nd94b6343d9054caeb60fd17f86c2ff2c schema:issueNumber 2
119 rdf:type schema:PublicationIssue
120 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
121 schema:name Mathematical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
124 schema:name Applied Mathematics
125 rdf:type schema:DefinedTerm
126 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
127 schema:name Earth Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
130 schema:name Geophysics
131 rdf:type schema:DefinedTerm
132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
133 schema:name Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
136 schema:name Geomatic Engineering
137 rdf:type schema:DefinedTerm
138 sg:journal.1052480 schema:issn 0949-7714
139 1432-1394
140 schema:name Journal of Geodesy
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.014476374441.74 schema:affiliation grid-institutes:grid.7551.6
144 schema:familyName Hussmann
145 schema:givenName Hauke
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476374441.74
147 rdf:type schema:Person
148 sg:person.016143566315.57 schema:affiliation grid-institutes:grid.7551.6
149 schema:familyName Stark
150 schema:givenName Alexander
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143566315.57
152 rdf:type schema:Person
153 sg:person.016522654634.94 schema:affiliation grid-institutes:grid.6734.6
154 schema:familyName Xiao
155 schema:givenName Haifeng
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522654634.94
157 rdf:type schema:Person
158 sg:person.0642304505.83 schema:affiliation grid-institutes:grid.7551.6
159 schema:familyName Oberst
160 schema:givenName Jürgen
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83
162 rdf:type schema:Person
163 sg:person.07453771523.50 schema:affiliation grid-institutes:grid.168010.e
164 schema:familyName Steinbrügge
165 schema:givenName Gregor
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453771523.50
167 rdf:type schema:Person
168 sg:pub.10.1007/s00190-010-0379-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053664636
169 https://doi.org/10.1007/s00190-010-0379-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10569-017-9805-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101168402
172 https://doi.org/10.1007/s10569-017-9805-5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10686-010-9199-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030217573
175 https://doi.org/10.1007/s10686-010-9199-9
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11214-015-0231-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035779258
178 https://doi.org/10.1007/s11214-015-0231-2
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11214-017-0375-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090939438
181 https://doi.org/10.1007/s11214-017-0375-3
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11214-017-0440-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1093059337
184 https://doi.org/10.1007/s11214-017-0440-y
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s12567-019-00270-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1120309601
187 https://doi.org/10.1007/s12567-019-00270-y
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s12567-019-00282-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121963765
190 https://doi.org/10.1007/s12567-019-00282-8
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/srep45629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084508642
193 https://doi.org/10.1038/srep45629
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.168010.e schema:alternateName Department of Geophysics, Stanford University, Stanford, USA
196 schema:name Department of Geophysics, Stanford University, Stanford, USA
197 rdf:type schema:Organization
198 grid-institutes:grid.6734.6 schema:alternateName Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, Berlin, Germany
199 schema:name Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, Berlin, Germany
200 rdf:type schema:Organization
201 grid-institutes:grid.7551.6 schema:alternateName Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
202 schema:name Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, Berlin, Germany
203 Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...