Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Guobin Chang, Tianhe Xu, Yifei Yao, Qianxin Wang

ABSTRACT

In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired. More... »

PAGES

1241-1253

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00190-018-1116-4

DOI

http://dx.doi.org/10.1007/s00190-018-1116-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100622653


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "School of Environmental Science and Spatial Informatics, China University of Mining and Technology, 221116, Xuzhou, China", 
            "State Key Laboratory of Geo-Information Engineering, Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Guobin", 
        "id": "sg:person.013156413714.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156413714.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "Institute of Space Science, Shandong University, 264209, Weihai, China", 
            "State Key Laboratory of Geo-Information Engineering, Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Tianhe", 
        "id": "sg:person.015636155053.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636155053.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North West Agriculture and Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.144022.1", 
          "name": [
            "College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Yangling, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Yifei", 
        "id": "sg:person.013323256715.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323256715.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "School of Environmental Science and Spatial Informatics, China University of Mining and Technology, 221116, Xuzhou, China", 
            "State Key Laboratory of Geo-Information Engineering, Xi\u2019an Research Institute of Surveying and Mapping, 710054, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qianxin", 
        "id": "sg:person.015677045675.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677045675.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00190-006-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002625689", 
          "https://doi.org/10.1007/s00190-006-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-006-0041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002625689", 
          "https://doi.org/10.1007/s00190-006-0041-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-006-0122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004874171", 
          "https://doi.org/10.1007/s00190-006-0122-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-006-0122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004874171", 
          "https://doi.org/10.1007/s00190-006-0122-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900100223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006232578", 
          "https://doi.org/10.1007/s001900100223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-012-0588-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008678652", 
          "https://doi.org/10.1007/s00190-012-0588-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00863419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009024077", 
          "https://doi.org/10.1007/bf00863419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-014-5027-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009424624", 
          "https://doi.org/10.1007/s11430-014-5027-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-014-0751-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018246405", 
          "https://doi.org/10.1007/s00190-014-0751-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00396265.2015.1133518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021044357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37404-3_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022627529", 
          "https://doi.org/10.1007/978-3-642-37404-3_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14498596.2016.1261373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028605849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-016-0886-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029381904", 
          "https://doi.org/10.1007/s00190-016-0886-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-007-0157-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586308", 
          "https://doi.org/10.1007/s00190-007-0157-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-007-0157-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586308", 
          "https://doi.org/10.1007/s00190-007-0157-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900000157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034403442", 
          "https://doi.org/10.1007/s001900000157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0373463303002248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034547252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0373463303002248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034547252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-016-0945-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035759129", 
          "https://doi.org/10.1007/s00190-016-0945-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-016-0945-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035759129", 
          "https://doi.org/10.1007/s00190-016-0945-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-013-0670-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036939896", 
          "https://doi.org/10.1007/s00190-013-0670-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-015-0456-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038828475", 
          "https://doi.org/10.1007/s10291-015-0456-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01490419.2016.1207729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040543556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-014-0423-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042267801", 
          "https://doi.org/10.1007/s10291-014-0423-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-014-0423-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042267801", 
          "https://doi.org/10.1007/s10291-014-0423-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-015-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045889303", 
          "https://doi.org/10.1007/s10291-015-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-007-0201-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048118430", 
          "https://doi.org/10.1007/s00190-007-0201-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-007-0201-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048118430", 
          "https://doi.org/10.1007/s00190-007-0201-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-014-0717-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048589533", 
          "https://doi.org/10.1007/s00190-014-0717-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-010-0426-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048843609", 
          "https://doi.org/10.1007/s00190-010-0426-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-011-0237-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049886912", 
          "https://doi.org/10.1007/s10291-011-0237-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10291-011-0237-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049886912", 
          "https://doi.org/10.1007/s10291-011-0237-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2013.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053556567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954410014545181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063887936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954410014545181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063887936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954410014545181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063887936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470045345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470045345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698387"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00190-018-1116-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052480", 
        "issn": [
          "0949-7714", 
          "1432-1394"
        ], 
        "name": "Journal of Geodesy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "name": "Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals", 
    "pagination": "1241-1253", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db5913dae589c2614a61f31d6b89e5180b1ee92858d3879daf2d178a61e87d93"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00190-018-1116-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100622653"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00190-018-1116-4", 
      "https://app.dimensions.ai/details/publication/pub.1100622653"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00190-018-1116-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00190-018-1116-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00190-018-1116-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00190-018-1116-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00190-018-1116-4'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00190-018-1116-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N44f510011dba49dbadee83ff998a3c30
4 schema:citation sg:pub.10.1007/978-3-642-37404-3_33
5 sg:pub.10.1007/bf00863419
6 sg:pub.10.1007/s00190-006-0041-0
7 sg:pub.10.1007/s00190-006-0122-0
8 sg:pub.10.1007/s00190-007-0157-x
9 sg:pub.10.1007/s00190-007-0201-x
10 sg:pub.10.1007/s00190-010-0426-y
11 sg:pub.10.1007/s00190-012-0588-x
12 sg:pub.10.1007/s00190-013-0670-z
13 sg:pub.10.1007/s00190-014-0717-9
14 sg:pub.10.1007/s00190-014-0751-7
15 sg:pub.10.1007/s00190-016-0886-9
16 sg:pub.10.1007/s00190-016-0945-2
17 sg:pub.10.1007/s001900000157
18 sg:pub.10.1007/s001900100223
19 sg:pub.10.1007/s10291-011-0237-5
20 sg:pub.10.1007/s10291-014-0423-3
21 sg:pub.10.1007/s10291-015-0456-2
22 sg:pub.10.1007/s10291-015-0487-8
23 sg:pub.10.1007/s11430-014-5027-9
24 https://doi.org/10.1002/0470045345
25 https://doi.org/10.1016/j.cageo.2013.01.014
26 https://doi.org/10.1017/s0373463303002248
27 https://doi.org/10.1080/00396265.2015.1133518
28 https://doi.org/10.1080/01490419.2016.1207729
29 https://doi.org/10.1080/14498596.2016.1261373
30 https://doi.org/10.1177/0954410014545181
31 schema:datePublished 2018-11
32 schema:datePublishedReg 2018-11-01
33 schema:description In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N2d3219c9dcbe406f91b6515e6525cb16
38 Nb3d0c796bde842d28e00384536be8883
39 sg:journal.1052480
40 schema:name Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals
41 schema:pagination 1241-1253
42 schema:productId N006dcbc00a0d4ef2b71bdc5eb26eb50b
43 N588c0c16596046899e4fa2b65a2b3c83
44 N7582a035bd0a40f686c46b526c7ddc7f
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100622653
46 https://doi.org/10.1007/s00190-018-1116-4
47 schema:sdDatePublished 2019-04-10T14:23
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nbf86e09ebbf84b63987c704c25931938
50 schema:url https://link.springer.com/10.1007%2Fs00190-018-1116-4
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N006dcbc00a0d4ef2b71bdc5eb26eb50b schema:name readcube_id
55 schema:value db5913dae589c2614a61f31d6b89e5180b1ee92858d3879daf2d178a61e87d93
56 rdf:type schema:PropertyValue
57 N2ae20ec699754bdbbb96b2e444d95e82 rdf:first sg:person.015677045675.89
58 rdf:rest rdf:nil
59 N2d3219c9dcbe406f91b6515e6525cb16 schema:volumeNumber 92
60 rdf:type schema:PublicationVolume
61 N44f510011dba49dbadee83ff998a3c30 rdf:first sg:person.013156413714.88
62 rdf:rest Ne4d2b2585d1e4bca98105fa9e63add2b
63 N588c0c16596046899e4fa2b65a2b3c83 schema:name doi
64 schema:value 10.1007/s00190-018-1116-4
65 rdf:type schema:PropertyValue
66 N7582a035bd0a40f686c46b526c7ddc7f schema:name dimensions_id
67 schema:value pub.1100622653
68 rdf:type schema:PropertyValue
69 Nb3d0c796bde842d28e00384536be8883 schema:issueNumber 11
70 rdf:type schema:PublicationIssue
71 Nbf86e09ebbf84b63987c704c25931938 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Ne4d2b2585d1e4bca98105fa9e63add2b rdf:first sg:person.015636155053.81
74 rdf:rest Ne675dbd39b8f4784a071e2b6805eb57a
75 Ne675dbd39b8f4784a071e2b6805eb57a rdf:first sg:person.013323256715.53
76 rdf:rest N2ae20ec699754bdbbb96b2e444d95e82
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
81 schema:name Statistics
82 rdf:type schema:DefinedTerm
83 sg:journal.1052480 schema:issn 0949-7714
84 1432-1394
85 schema:name Journal of Geodesy
86 rdf:type schema:Periodical
87 sg:person.013156413714.88 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
88 schema:familyName Chang
89 schema:givenName Guobin
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156413714.88
91 rdf:type schema:Person
92 sg:person.013323256715.53 schema:affiliation https://www.grid.ac/institutes/grid.144022.1
93 schema:familyName Yao
94 schema:givenName Yifei
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323256715.53
96 rdf:type schema:Person
97 sg:person.015636155053.81 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
98 schema:familyName Xu
99 schema:givenName Tianhe
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636155053.81
101 rdf:type schema:Person
102 sg:person.015677045675.89 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
103 schema:familyName Wang
104 schema:givenName Qianxin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677045675.89
106 rdf:type schema:Person
107 sg:pub.10.1007/978-3-642-37404-3_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022627529
108 https://doi.org/10.1007/978-3-642-37404-3_33
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf00863419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009024077
111 https://doi.org/10.1007/bf00863419
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00190-006-0041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002625689
114 https://doi.org/10.1007/s00190-006-0041-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00190-006-0122-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004874171
117 https://doi.org/10.1007/s00190-006-0122-0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00190-007-0157-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032586308
120 https://doi.org/10.1007/s00190-007-0157-x
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00190-007-0201-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048118430
123 https://doi.org/10.1007/s00190-007-0201-x
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00190-010-0426-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048843609
126 https://doi.org/10.1007/s00190-010-0426-y
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00190-012-0588-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008678652
129 https://doi.org/10.1007/s00190-012-0588-x
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00190-013-0670-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036939896
132 https://doi.org/10.1007/s00190-013-0670-z
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00190-014-0717-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048589533
135 https://doi.org/10.1007/s00190-014-0717-9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00190-014-0751-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018246405
138 https://doi.org/10.1007/s00190-014-0751-7
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00190-016-0886-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029381904
141 https://doi.org/10.1007/s00190-016-0886-9
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00190-016-0945-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035759129
144 https://doi.org/10.1007/s00190-016-0945-2
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s001900000157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034403442
147 https://doi.org/10.1007/s001900000157
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s001900100223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006232578
150 https://doi.org/10.1007/s001900100223
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10291-011-0237-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049886912
153 https://doi.org/10.1007/s10291-011-0237-5
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10291-014-0423-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042267801
156 https://doi.org/10.1007/s10291-014-0423-3
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10291-015-0456-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038828475
159 https://doi.org/10.1007/s10291-015-0456-2
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s10291-015-0487-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045889303
162 https://doi.org/10.1007/s10291-015-0487-8
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11430-014-5027-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424624
165 https://doi.org/10.1007/s11430-014-5027-9
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/0470045345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698387
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.cageo.2013.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053556567
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1017/s0373463303002248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034547252
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/00396265.2015.1133518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021044357
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/01490419.2016.1207729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040543556
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/14498596.2016.1261373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028605849
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1177/0954410014545181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063887936
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.144022.1 schema:alternateName North West Agriculture and Forestry University
182 schema:name College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Yangling, China
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.464302.7 schema:alternateName Chinese Academy of Surveying and Mapping
185 schema:name Institute of Space Science, Shandong University, 264209, Weihai, China
186 School of Environmental Science and Spatial Informatics, China University of Mining and Technology, 221116, Xuzhou, China
187 State Key Laboratory of Geo-Information Engineering, Xi’an Research Institute of Surveying and Mapping, 710054, Xi’an, China
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...