On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Tao Jiang, Yan Ming Wang

ABSTRACT

One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed. More... »

PAGES

1405-1418

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00190-016-0932-7

DOI

http://dx.doi.org/10.1007/s00190-016-0932-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016070489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Surveying and Mapping", 
          "id": "https://www.grid.ac/institutes/grid.464302.7", 
          "name": [
            "Chinese Academy of Surveying and Mapping, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Tao", 
        "id": "sg:person.013362604345.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013362604345.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Geodetic Survey", 
          "id": "https://www.grid.ac/institutes/grid.410486.f", 
          "name": [
            "National Geodetic Survey, NOAA, Silver Spring, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yan Ming", 
        "id": "sg:person.011537241004.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537241004.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.7848/ksgpc.2013.31.6-2.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002265991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gl061904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009002923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-011-0506-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018357342", 
          "https://doi.org/10.1007/s00190-011-0506-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005rg000183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018802378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jb008916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019715144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96jb00819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020473330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-012-0589-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026491938", 
          "https://doi.org/10.1007/s00190-012-0589-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.2011.01017.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028658099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2003.02083.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030711792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jb004220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032125184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-009-0302-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035965709", 
          "https://doi.org/10.1007/s00190-009-0302-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-009-0302-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035965709", 
          "https://doi.org/10.1007/s00190-009-0302-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgrb.50167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036105817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-002-0257-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037732805", 
          "https://doi.org/10.1007/s00190-002-0257-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74584-6_58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038565054", 
          "https://doi.org/10.1007/978-3-540-74584-6_58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74584-6_58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038565054", 
          "https://doi.org/10.1007/978-3-540-74584-6_58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb095ib13p21885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040261202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-002-0252-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042958345", 
          "https://doi.org/10.1007/s00190-002-0252-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-013-0653-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043023965", 
          "https://doi.org/10.1007/s00190-013-0653-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-002-0284-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045929644", 
          "https://doi.org/10.1007/s00190-002-0284-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bf03352296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047196294", 
          "https://doi.org/10.1186/bf03352296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.2008.00776.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051205637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052988337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10478083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3319/tao.2009.07.09.01(t)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071144146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada150788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091744048"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to \u00b11.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to \u00b10.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00190-016-0932-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7001287", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052480", 
        "issn": [
          "0949-7714", 
          "1432-1394"
        ], 
        "name": "Journal of Geodesy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation", 
    "pagination": "1405-1418", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c928463600380ba9a2ee26d2873ad4104210b7305be56d47cf6b9ba070b8a37"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00190-016-0932-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016070489"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00190-016-0932-7", 
      "https://app.dimensions.ai/details/publication/pub.1016070489"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00190-016-0932-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00190-016-0932-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00190-016-0932-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00190-016-0932-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00190-016-0932-7'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00190-016-0932-7 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N5142350c919b4107a2ddeada1ad87657
4 schema:citation sg:pub.10.1007/978-3-540-74584-6_58
5 sg:pub.10.1007/s00190-002-0252-y
6 sg:pub.10.1007/s00190-002-0257-6
7 sg:pub.10.1007/s00190-002-0284-3
8 sg:pub.10.1007/s00190-009-0302-9
9 sg:pub.10.1007/s00190-011-0506-7
10 sg:pub.10.1007/s00190-012-0589-9
11 sg:pub.10.1007/s00190-013-0653-0
12 sg:pub.10.1186/bf03352296
13 https://doi.org/10.1002/2014gl061904
14 https://doi.org/10.1002/grl.50716
15 https://doi.org/10.1002/jgrb.50167
16 https://doi.org/10.1029/2005jb004220
17 https://doi.org/10.1029/2005rg000183
18 https://doi.org/10.1029/2011jb008916
19 https://doi.org/10.1029/96jb00819
20 https://doi.org/10.1029/jb095ib13p21885
21 https://doi.org/10.1080/01621459.1984.10478083
22 https://doi.org/10.1111/j.1365-246x.2003.02083.x
23 https://doi.org/10.1111/j.1365-2478.2008.00776.x
24 https://doi.org/10.1111/j.1365-2478.2011.01017.x
25 https://doi.org/10.21236/ada150788
26 https://doi.org/10.3319/tao.2009.07.09.01(t)
27 https://doi.org/10.7848/ksgpc.2013.31.6-2.567
28 schema:datePublished 2016-12
29 schema:datePublishedReg 2016-12-01
30 schema:description One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf Nafe9bf837256474a9dd47d8dc75a5208
35 Nf661d9416db840a681812a2b6f794be3
36 sg:journal.1052480
37 schema:name On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation
38 schema:pagination 1405-1418
39 schema:productId N66c0949049cf421e876244719b0edf06
40 N75cf69c4694e4ca8ad62f381d10adf61
41 Nb1a53c3df8034396a74b9f53bd97f6f4
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016070489
43 https://doi.org/10.1007/s00190-016-0932-7
44 schema:sdDatePublished 2019-04-11T12:26
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nbf124f89c01a4f31a7d4535f2a095778
47 schema:url https://link.springer.com/10.1007%2Fs00190-016-0932-7
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N5142350c919b4107a2ddeada1ad87657 rdf:first sg:person.013362604345.58
52 rdf:rest Nf8a7b03081664b109265992740d9fd67
53 N66c0949049cf421e876244719b0edf06 schema:name readcube_id
54 schema:value 4c928463600380ba9a2ee26d2873ad4104210b7305be56d47cf6b9ba070b8a37
55 rdf:type schema:PropertyValue
56 N75cf69c4694e4ca8ad62f381d10adf61 schema:name dimensions_id
57 schema:value pub.1016070489
58 rdf:type schema:PropertyValue
59 Nafe9bf837256474a9dd47d8dc75a5208 schema:issueNumber 12
60 rdf:type schema:PublicationIssue
61 Nb1a53c3df8034396a74b9f53bd97f6f4 schema:name doi
62 schema:value 10.1007/s00190-016-0932-7
63 rdf:type schema:PropertyValue
64 Nbf124f89c01a4f31a7d4535f2a095778 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nf661d9416db840a681812a2b6f794be3 schema:volumeNumber 90
67 rdf:type schema:PublicationVolume
68 Nf8a7b03081664b109265992740d9fd67 rdf:first sg:person.011537241004.41
69 rdf:rest rdf:nil
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
74 schema:name Geomatic Engineering
75 rdf:type schema:DefinedTerm
76 sg:grant.7001287 http://pending.schema.org/fundedItem sg:pub.10.1007/s00190-016-0932-7
77 rdf:type schema:MonetaryGrant
78 sg:journal.1052480 schema:issn 0949-7714
79 1432-1394
80 schema:name Journal of Geodesy
81 rdf:type schema:Periodical
82 sg:person.011537241004.41 schema:affiliation https://www.grid.ac/institutes/grid.410486.f
83 schema:familyName Wang
84 schema:givenName Yan Ming
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537241004.41
86 rdf:type schema:Person
87 sg:person.013362604345.58 schema:affiliation https://www.grid.ac/institutes/grid.464302.7
88 schema:familyName Jiang
89 schema:givenName Tao
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013362604345.58
91 rdf:type schema:Person
92 sg:pub.10.1007/978-3-540-74584-6_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038565054
93 https://doi.org/10.1007/978-3-540-74584-6_58
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00190-002-0252-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042958345
96 https://doi.org/10.1007/s00190-002-0252-y
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00190-002-0257-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037732805
99 https://doi.org/10.1007/s00190-002-0257-6
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00190-002-0284-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045929644
102 https://doi.org/10.1007/s00190-002-0284-3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00190-009-0302-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035965709
105 https://doi.org/10.1007/s00190-009-0302-9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00190-011-0506-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018357342
108 https://doi.org/10.1007/s00190-011-0506-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00190-012-0589-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026491938
111 https://doi.org/10.1007/s00190-012-0589-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00190-013-0653-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043023965
114 https://doi.org/10.1007/s00190-013-0653-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/bf03352296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047196294
117 https://doi.org/10.1186/bf03352296
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/2014gl061904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009002923
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/grl.50716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052988337
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/jgrb.50167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036105817
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1029/2005jb004220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032125184
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1029/2005rg000183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018802378
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1029/2011jb008916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019715144
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1029/96jb00819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020473330
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1029/jb095ib13p21885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040261202
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/01621459.1984.10478083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303009
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/j.1365-246x.2003.02083.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030711792
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/j.1365-2478.2008.00776.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051205637
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.1365-2478.2011.01017.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028658099
142 rdf:type schema:CreativeWork
143 https://doi.org/10.21236/ada150788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091744048
144 rdf:type schema:CreativeWork
145 https://doi.org/10.3319/tao.2009.07.09.01(t) schema:sameAs https://app.dimensions.ai/details/publication/pub.1071144146
146 rdf:type schema:CreativeWork
147 https://doi.org/10.7848/ksgpc.2013.31.6-2.567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002265991
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.410486.f schema:alternateName National Geodetic Survey
150 schema:name National Geodetic Survey, NOAA, Silver Spring, MD, USA
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.464302.7 schema:alternateName Chinese Academy of Surveying and Mapping
153 schema:name Chinese Academy of Surveying and Mapping, Beijing, China
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...