Error analysis of the NGS’ surface gravity database View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

Jarir Saleh, Xiaopeng Li, Yan Ming Wang, Daniel R. Roman, Dru A. Smith

ABSTRACT

Are the National Geodetic Survey’s surface gravity data sufficient for supporting the computation of a 1 cm-accurate geoid? This paper attempts to answer this question by deriving a few measures of accuracy for this data and estimating their effects on the US geoid. We use a data set which comprises million gravity observations collected in 1,489 surveys. Comparisons to GRACE-derived gravity and geoid are made to estimate the long-wavelength errors. Crossover analysis and -nearest neighbor predictions are used for estimating local gravity biases and high-frequency gravity errors, and the corresponding geoid biases and high-frequency geoid errors are evaluated. Results indicate that 244 of all 1,489 surface gravity surveys have significant biases mGal, with geoid implications that reach 20 cm. Some of the biased surveys are large enough in horizontal extent to be reliably corrected by satellite-derived gravity models, but many others are not. In addition, the results suggest that the data are contaminated by high-frequency errors with an RMS of mGal. This causes high-frequency geoid errors of a few centimeters in and to the west of the Rocky Mountains and in the Appalachians and a few millimeters or less everywhere else. Finally, long-wavelength () surface gravity errors on the sub-mGal level but with large horizontal extent are found. All of the south and southeast of the USA is biased by +0.3 to +0.8 mGal and the Rocky Mountains by to mGal. These small but extensive gravity errors lead to long-wavelength geoid errors that reach 60 cm in the interior of the USA. More... »

PAGES

203-221

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00190-012-0589-9

DOI

http://dx.doi.org/10.1007/s00190-012-0589-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026491938


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Earth Resources Technology (United States)", 
          "id": "https://www.grid.ac/institutes/grid.486861.5", 
          "name": [
            "Earth Resources Technology, 1315 East-West Hwy, 20910, Silver Spring, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saleh", 
        "givenName": "Jarir", 
        "id": "sg:person.011760546617.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011760546617.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Earth Resources Technology (United States)", 
          "id": "https://www.grid.ac/institutes/grid.486861.5", 
          "name": [
            "Earth Resources Technology, 1315 East-West Hwy, 20910, Silver Spring, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaopeng", 
        "id": "sg:person.013071233601.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071233601.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Geodetic Survey", 
          "id": "https://www.grid.ac/institutes/grid.410486.f", 
          "name": [
            "National Geodetic Survey, 1315 East-West Hwy, 20910, Silver Spring, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yan Ming", 
        "id": "sg:person.011537241004.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537241004.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Geodetic Survey", 
          "id": "https://www.grid.ac/institutes/grid.410486.f", 
          "name": [
            "National Geodetic Survey, 1315 East-West Hwy, 20910, Silver Spring, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roman", 
        "givenName": "Daniel R.", 
        "id": "sg:person.012560102507.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560102507.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Geodetic Survey", 
          "id": "https://www.grid.ac/institutes/grid.410486.f", 
          "name": [
            "National Geodetic Survey, 1315 East-West Hwy, 20910, Silver Spring, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Dru A.", 
        "id": "sg:person.016654516201.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654516201.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s001900100200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000191258", 
          "https://doi.org/10.1007/s001900100200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-27432-4_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003851092", 
          "https://doi.org/10.1007/3-540-27432-4_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900050080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009669842", 
          "https://doi.org/10.1007/s001900050080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1464-1895(98)00007-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900050239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012134722", 
          "https://doi.org/10.1007/s001900050239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2008.03924.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013123221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb093ib01p00393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017944246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-011-0506-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018357342", 
          "https://doi.org/10.1007/s00190-011-0506-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jb008916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019715144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85426-5_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021594064", 
          "https://doi.org/10.1007/978-3-540-85426-5_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85426-5_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021594064", 
          "https://doi.org/10.1007/978-3-540-85426-5_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-009-0355-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023077557", 
          "https://doi.org/10.1007/s00190-009-0355-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-009-0355-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023077557", 
          "https://doi.org/10.1007/s00190-009-0355-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-009-0355-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023077557", 
          "https://doi.org/10.1007/s00190-009-0355-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10156-010-0016-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024677199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.2011.01017.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028658099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.72.3.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031223963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.1969.tb00264.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034254458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900000129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037381833", 
          "https://doi.org/10.1007/s001900000129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02530617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041434815", 
          "https://doi.org/10.1007/bf02530617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-010-0422-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044093144", 
          "https://doi.org/10.1007/s00190-010-0422-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada150788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091744048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511804120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098678499"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "Are the National Geodetic Survey\u2019s surface gravity data sufficient for supporting the computation of a 1 cm-accurate geoid? This paper attempts to answer this question by deriving a few measures of accuracy for this data and estimating their effects on the US geoid. We use a data set which comprises million gravity observations collected in 1,489 surveys. Comparisons to GRACE-derived gravity and geoid are made to estimate the long-wavelength errors. Crossover analysis and -nearest neighbor predictions are used for estimating local gravity biases and high-frequency gravity errors, and the corresponding geoid biases and high-frequency geoid errors are evaluated. Results indicate that 244 of all 1,489 surface gravity surveys have significant biases mGal, with geoid implications that reach 20 cm. Some of the biased surveys are large enough in horizontal extent to be reliably corrected by satellite-derived gravity models, but many others are not. In addition, the results suggest that the data are contaminated by high-frequency errors with an RMS of mGal. This causes high-frequency geoid errors of a few centimeters in and to the west of the Rocky Mountains and in the Appalachians and a few millimeters or less everywhere else. Finally, long-wavelength () surface gravity errors on the sub-mGal level but with large horizontal extent are found. All of the south and southeast of the USA is biased by +0.3 to +0.8 mGal and the Rocky Mountains by to mGal. These small but extensive gravity errors lead to long-wavelength geoid errors that reach 60 cm in the interior of the USA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00190-012-0589-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052480", 
        "issn": [
          "0949-7714", 
          "1432-1394"
        ], 
        "name": "Journal of Geodesy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Error analysis of the NGS\u2019 surface gravity database", 
    "pagination": "203-221", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e3586f5f8aded44cde1e519d25480c65afd9a311446f16febb3fdc1e2cd2cf2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00190-012-0589-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026491938"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00190-012-0589-9", 
      "https://app.dimensions.ai/details/publication/pub.1026491938"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00190-012-0589-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00190-012-0589-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00190-012-0589-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00190-012-0589-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00190-012-0589-9'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00190-012-0589-9 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N2b589f7d4b9f4a69a4d4b86dc5e2e7e8
4 schema:citation sg:pub.10.1007/3-540-27432-4_42
5 sg:pub.10.1007/978-3-540-85426-5_21
6 sg:pub.10.1007/bf02530617
7 sg:pub.10.1007/s00190-009-0355-9
8 sg:pub.10.1007/s00190-010-0422-2
9 sg:pub.10.1007/s00190-011-0506-7
10 sg:pub.10.1007/s001900000129
11 sg:pub.10.1007/s001900050080
12 sg:pub.10.1007/s001900050239
13 sg:pub.10.1007/s001900100200
14 https://doi.org/10.1016/s1464-1895(98)00007-6
15 https://doi.org/10.1017/cbo9780511804120
16 https://doi.org/10.1029/2011jb008916
17 https://doi.org/10.1029/jb093ib01p00393
18 https://doi.org/10.1111/j.1365-246x.1969.tb00264.x
19 https://doi.org/10.1111/j.1365-246x.2008.03924.x
20 https://doi.org/10.1111/j.1365-2478.2011.01017.x
21 https://doi.org/10.1126/science.220.4598.671
22 https://doi.org/10.14358/pers.72.3.237
23 https://doi.org/10.21236/ada150788
24 https://doi.org/10.2478/v10156-010-0016-1
25 schema:datePublished 2013-03
26 schema:datePublishedReg 2013-03-01
27 schema:description Are the National Geodetic Survey’s surface gravity data sufficient for supporting the computation of a 1 cm-accurate geoid? This paper attempts to answer this question by deriving a few measures of accuracy for this data and estimating their effects on the US geoid. We use a data set which comprises million gravity observations collected in 1,489 surveys. Comparisons to GRACE-derived gravity and geoid are made to estimate the long-wavelength errors. Crossover analysis and -nearest neighbor predictions are used for estimating local gravity biases and high-frequency gravity errors, and the corresponding geoid biases and high-frequency geoid errors are evaluated. Results indicate that 244 of all 1,489 surface gravity surveys have significant biases mGal, with geoid implications that reach 20 cm. Some of the biased surveys are large enough in horizontal extent to be reliably corrected by satellite-derived gravity models, but many others are not. In addition, the results suggest that the data are contaminated by high-frequency errors with an RMS of mGal. This causes high-frequency geoid errors of a few centimeters in and to the west of the Rocky Mountains and in the Appalachians and a few millimeters or less everywhere else. Finally, long-wavelength () surface gravity errors on the sub-mGal level but with large horizontal extent are found. All of the south and southeast of the USA is biased by +0.3 to +0.8 mGal and the Rocky Mountains by to mGal. These small but extensive gravity errors lead to long-wavelength geoid errors that reach 60 cm in the interior of the USA.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N49df782879664174873b6df4a40974f8
32 N5f698bdfc90840d9a52488d4a525569c
33 sg:journal.1052480
34 schema:name Error analysis of the NGS’ surface gravity database
35 schema:pagination 203-221
36 schema:productId N099232dabeaf405680c8b9e530835d0a
37 N6ecedbdd766d4cf6a2f56a5dd2d61e94
38 Nc89ded333f094403ba699ac0e1ba629c
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026491938
40 https://doi.org/10.1007/s00190-012-0589-9
41 schema:sdDatePublished 2019-04-10T18:20
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N41cd7fc41f89496e8d2597d734dc1611
44 schema:url http://link.springer.com/10.1007%2Fs00190-012-0589-9
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N099232dabeaf405680c8b9e530835d0a schema:name doi
49 schema:value 10.1007/s00190-012-0589-9
50 rdf:type schema:PropertyValue
51 N2b589f7d4b9f4a69a4d4b86dc5e2e7e8 rdf:first sg:person.011760546617.79
52 rdf:rest N6bd153324f104618b5f85878464b1f88
53 N3b46786ca183402abb0ca9ff171ad2fc rdf:first sg:person.011537241004.41
54 rdf:rest N8076cba3a5944aeaa7bf219bd34122aa
55 N41cd7fc41f89496e8d2597d734dc1611 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N49df782879664174873b6df4a40974f8 schema:volumeNumber 87
58 rdf:type schema:PublicationVolume
59 N4a960872d9a34c2cbadafc503dc5e4ce rdf:first sg:person.016654516201.56
60 rdf:rest rdf:nil
61 N5f698bdfc90840d9a52488d4a525569c schema:issueNumber 3
62 rdf:type schema:PublicationIssue
63 N6bd153324f104618b5f85878464b1f88 rdf:first sg:person.013071233601.93
64 rdf:rest N3b46786ca183402abb0ca9ff171ad2fc
65 N6ecedbdd766d4cf6a2f56a5dd2d61e94 schema:name dimensions_id
66 schema:value pub.1026491938
67 rdf:type schema:PropertyValue
68 N8076cba3a5944aeaa7bf219bd34122aa rdf:first sg:person.012560102507.28
69 rdf:rest N4a960872d9a34c2cbadafc503dc5e4ce
70 Nc89ded333f094403ba699ac0e1ba629c schema:name readcube_id
71 schema:value 7e3586f5f8aded44cde1e519d25480c65afd9a311446f16febb3fdc1e2cd2cf2
72 rdf:type schema:PropertyValue
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
77 schema:name Geomatic Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1052480 schema:issn 0949-7714
80 1432-1394
81 schema:name Journal of Geodesy
82 rdf:type schema:Periodical
83 sg:person.011537241004.41 schema:affiliation https://www.grid.ac/institutes/grid.410486.f
84 schema:familyName Wang
85 schema:givenName Yan Ming
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537241004.41
87 rdf:type schema:Person
88 sg:person.011760546617.79 schema:affiliation https://www.grid.ac/institutes/grid.486861.5
89 schema:familyName Saleh
90 schema:givenName Jarir
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011760546617.79
92 rdf:type schema:Person
93 sg:person.012560102507.28 schema:affiliation https://www.grid.ac/institutes/grid.410486.f
94 schema:familyName Roman
95 schema:givenName Daniel R.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560102507.28
97 rdf:type schema:Person
98 sg:person.013071233601.93 schema:affiliation https://www.grid.ac/institutes/grid.486861.5
99 schema:familyName Li
100 schema:givenName Xiaopeng
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071233601.93
102 rdf:type schema:Person
103 sg:person.016654516201.56 schema:affiliation https://www.grid.ac/institutes/grid.410486.f
104 schema:familyName Smith
105 schema:givenName Dru A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654516201.56
107 rdf:type schema:Person
108 sg:pub.10.1007/3-540-27432-4_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003851092
109 https://doi.org/10.1007/3-540-27432-4_42
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-540-85426-5_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021594064
112 https://doi.org/10.1007/978-3-540-85426-5_21
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02530617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041434815
115 https://doi.org/10.1007/bf02530617
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00190-009-0355-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023077557
118 https://doi.org/10.1007/s00190-009-0355-9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00190-010-0422-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044093144
121 https://doi.org/10.1007/s00190-010-0422-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00190-011-0506-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018357342
124 https://doi.org/10.1007/s00190-011-0506-7
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s001900000129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037381833
127 https://doi.org/10.1007/s001900000129
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s001900050080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009669842
130 https://doi.org/10.1007/s001900050080
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s001900050239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012134722
133 https://doi.org/10.1007/s001900050239
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s001900100200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000191258
136 https://doi.org/10.1007/s001900100200
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1464-1895(98)00007-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011726135
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1017/cbo9780511804120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098678499
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1029/2011jb008916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019715144
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1029/jb093ib01p00393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017944246
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/j.1365-246x.1969.tb00264.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034254458
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1365-246x.2008.03924.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013123221
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1111/j.1365-2478.2011.01017.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028658099
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
153 rdf:type schema:CreativeWork
154 https://doi.org/10.14358/pers.72.3.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031223963
155 rdf:type schema:CreativeWork
156 https://doi.org/10.21236/ada150788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091744048
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2478/v10156-010-0016-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024677199
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.410486.f schema:alternateName National Geodetic Survey
161 schema:name National Geodetic Survey, 1315 East-West Hwy, 20910, Silver Spring, MD, USA
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.486861.5 schema:alternateName Earth Resources Technology (United States)
164 schema:name Earth Resources Technology, 1315 East-West Hwy, 20910, Silver Spring, MD, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...