Estimability analysis of variance and covariance components View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-09

AUTHORS

Peiliang Xu, Yumei Liu, Yunzhong Shen, Yoichi Fukuda

ABSTRACT

Although variance and covariance components have been extensively investigated and a number of elegant formulae to compute them have been derived, nothing is known, without any ambiguity, about their estimability in the case of a fully unknown variance–covariance matrix. We prove that variance and covariance components in this case are not estimable, thus clarifying the ambiguity of the literature on the topic and correcting some erroneous statements in the literature. We also give a new theorem on the estimability of a linear function of variance and covariance components. Then we propose a new method to estimate the variance–covariance matrix with special structure, which can presumably be represented by, at most, r(r + 1)/2 independent parameters to guarantee its estimability in such a subspace, by directly implementing the positive definiteness of the matrix as constraint to the restricted maximum likelihood method, where r is the number of redundant measurements. Therefore, our estimates of the variance and covariance components always reconstruct a positive definite matrix and are always physically meaningful. More... »

PAGES

593-602

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00190-006-0122-0

DOI

http://dx.doi.org/10.1007/s00190-006-0122-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004874171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Literary Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Disaster Prevention Research Institute, Kyoto University, 611-0011, Kyoto, Uji, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Peiliang", 
        "id": "sg:person.016376421413.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016376421413.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Civil Engineering, Shenyang Jianzu University, Hun-nan District, 110168, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yumei", 
        "id": "sg:person.014033340011.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033340011.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Department of Surveying Engineering, Tongji University, Shiping Road 1239, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Yunzhong", 
        "id": "sg:person.014077032075.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077032075.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Geophysics, Kyoto University, 606-8502, Kyoto, Sakyo-ku, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuda", 
        "givenName": "Yoichi", 
        "id": "sg:person.014060465531.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014060465531.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/02331887408801162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013047172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02521994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014075368", 
          "https://doi.org/10.1007/bf02521994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(76)90010-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015550373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-26-6-537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018352571", 
          "https://doi.org/10.1186/1297-9686-26-6-537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02522340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018625247", 
          "https://doi.org/10.1007/bf02522340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02519147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020790169", 
          "https://doi.org/10.1007/bf02519147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02519147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020790169", 
          "https://doi.org/10.1007/bf02519147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00873704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023328407", 
          "https://doi.org/10.1007/bf00873704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00873704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023328407", 
          "https://doi.org/10.1007/bf00873704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-006-0032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028243288", 
          "https://doi.org/10.1007/s00190-006-0032-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00190-006-0032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028243288", 
          "https://doi.org/10.1007/s00190-006-0032-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03976-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030279367", 
          "https://doi.org/10.1007/978-3-662-03976-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03976-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030279367", 
          "https://doi.org/10.1007/978-3-662-03976-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(71)90001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040695101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001900000109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041839062", 
          "https://doi.org/10.1007/s001900000109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02527035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047851041", 
          "https://doi.org/10.1007/bf02527035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1939.10503549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058298322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1970.10481070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1973.10481414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331937408842190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058309335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/54.1-2.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/58.3.545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/84.1.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070164068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103085999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2983690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103085999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103193307", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09", 
    "datePublishedReg": "2007-09-01", 
    "description": "Although variance and covariance components have been extensively investigated and a number of elegant formulae to compute them have been derived, nothing is known, without any ambiguity, about their estimability in the case of a fully unknown variance\u2013covariance matrix. We prove that variance and covariance components in this case are not estimable, thus clarifying the ambiguity of the literature on the topic and correcting some erroneous statements in the literature. We also give a new theorem on the estimability of a linear function of variance and covariance components. Then we propose a new method to estimate the variance\u2013covariance matrix with special structure, which can presumably be represented by, at most, r(r + 1)/2 independent parameters to guarantee its estimability in such a subspace, by directly implementing the positive definiteness of the matrix as constraint to the restricted maximum likelihood method, where r is the number of redundant measurements. Therefore, our estimates of the variance and covariance components always reconstruct a positive definite matrix and are always physically meaningful.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00190-006-0122-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052480", 
        "issn": [
          "0949-7714", 
          "1432-1394"
        ], 
        "name": "Journal of Geodesy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "name": "Estimability analysis of variance and covariance components", 
    "pagination": "593-602", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1739b0e9c497632a34363fd2b4c8ee80d414c7f41ac8497ceefa89b4265ad1c7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00190-006-0122-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004874171"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00190-006-0122-0", 
      "https://app.dimensions.ai/details/publication/pub.1004874171"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13093_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00190-006-0122-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00190-006-0122-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00190-006-0122-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00190-006-0122-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00190-006-0122-0'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00190-006-0122-0 schema:about anzsrc-for:20
2 anzsrc-for:2005
3 schema:author N99b14c2540d54512b982ab909565c432
4 schema:citation sg:pub.10.1007/978-3-662-03976-2
5 sg:pub.10.1007/bf00873704
6 sg:pub.10.1007/bf02519147
7 sg:pub.10.1007/bf02521994
8 sg:pub.10.1007/bf02522340
9 sg:pub.10.1007/bf02527035
10 sg:pub.10.1007/s00190-006-0032-1
11 sg:pub.10.1007/s001900000109
12 sg:pub.10.1186/1297-9686-26-6-537
13 https://app.dimensions.ai/details/publication/pub.1103193307
14 https://doi.org/10.1016/0047-259x(71)90001-7
15 https://doi.org/10.1016/0047-259x(76)90010-5
16 https://doi.org/10.1080/01621459.1939.10503549
17 https://doi.org/10.1080/01621459.1970.10481070
18 https://doi.org/10.1080/01621459.1973.10481414
19 https://doi.org/10.1080/02331887408801162
20 https://doi.org/10.1080/02331937408842190
21 https://doi.org/10.1093/biomet/54.1-2.93
22 https://doi.org/10.1093/biomet/58.3.545
23 https://doi.org/10.1093/biomet/84.1.95
24 https://doi.org/10.2307/2529395
25 https://doi.org/10.2307/2983690
26 https://doi.org/10.2307/3001853
27 schema:datePublished 2007-09
28 schema:datePublishedReg 2007-09-01
29 schema:description Although variance and covariance components have been extensively investigated and a number of elegant formulae to compute them have been derived, nothing is known, without any ambiguity, about their estimability in the case of a fully unknown variance–covariance matrix. We prove that variance and covariance components in this case are not estimable, thus clarifying the ambiguity of the literature on the topic and correcting some erroneous statements in the literature. We also give a new theorem on the estimability of a linear function of variance and covariance components. Then we propose a new method to estimate the variance–covariance matrix with special structure, which can presumably be represented by, at most, r(r + 1)/2 independent parameters to guarantee its estimability in such a subspace, by directly implementing the positive definiteness of the matrix as constraint to the restricted maximum likelihood method, where r is the number of redundant measurements. Therefore, our estimates of the variance and covariance components always reconstruct a positive definite matrix and are always physically meaningful.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N800dda29f05b4b188b4811e477c9c7b9
34 Nf774a3f725a34675ae308bedc0f25411
35 sg:journal.1052480
36 schema:name Estimability analysis of variance and covariance components
37 schema:pagination 593-602
38 schema:productId N31baf44b41d140d88d92b29d6b09ceb1
39 N3eaf6143cfe94bf18100be1de90255b9
40 Nf1562fb206384513a993d23f89798bc1
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004874171
42 https://doi.org/10.1007/s00190-006-0122-0
43 schema:sdDatePublished 2019-04-11T14:30
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nb12bdacd3825491aaf709fb588906a22
46 schema:url http://link.springer.com/10.1007%2Fs00190-006-0122-0
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N31baf44b41d140d88d92b29d6b09ceb1 schema:name dimensions_id
51 schema:value pub.1004874171
52 rdf:type schema:PropertyValue
53 N3eaf6143cfe94bf18100be1de90255b9 schema:name doi
54 schema:value 10.1007/s00190-006-0122-0
55 rdf:type schema:PropertyValue
56 N568a2a806b084ba9a63bb1c2c65ef2c2 rdf:first sg:person.014033340011.71
57 rdf:rest N59b2427e748b4bbbbf64abdc6b41ab1a
58 N59b2427e748b4bbbbf64abdc6b41ab1a rdf:first sg:person.014077032075.13
59 rdf:rest Nc01b87c50fe74d2db4b7f44d43731562
60 N800dda29f05b4b188b4811e477c9c7b9 schema:volumeNumber 81
61 rdf:type schema:PublicationVolume
62 N99b14c2540d54512b982ab909565c432 rdf:first sg:person.016376421413.78
63 rdf:rest N568a2a806b084ba9a63bb1c2c65ef2c2
64 Nb12bdacd3825491aaf709fb588906a22 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nc01b87c50fe74d2db4b7f44d43731562 rdf:first sg:person.014060465531.05
67 rdf:rest rdf:nil
68 Ne520786600cb43f783d47ddd518e47c1 schema:name School of Civil Engineering, Shenyang Jianzu University, Hun-nan District, 110168, Shenyang, China
69 rdf:type schema:Organization
70 Nf1562fb206384513a993d23f89798bc1 schema:name readcube_id
71 schema:value 1739b0e9c497632a34363fd2b4c8ee80d414c7f41ac8497ceefa89b4265ad1c7
72 rdf:type schema:PropertyValue
73 Nf774a3f725a34675ae308bedc0f25411 schema:issueNumber 9
74 rdf:type schema:PublicationIssue
75 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
76 schema:name Language, Communication and Culture
77 rdf:type schema:DefinedTerm
78 anzsrc-for:2005 schema:inDefinedTermSet anzsrc-for:
79 schema:name Literary Studies
80 rdf:type schema:DefinedTerm
81 sg:journal.1052480 schema:issn 0949-7714
82 1432-1394
83 schema:name Journal of Geodesy
84 rdf:type schema:Periodical
85 sg:person.014033340011.71 schema:affiliation Ne520786600cb43f783d47ddd518e47c1
86 schema:familyName Liu
87 schema:givenName Yumei
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033340011.71
89 rdf:type schema:Person
90 sg:person.014060465531.05 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
91 schema:familyName Fukuda
92 schema:givenName Yoichi
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014060465531.05
94 rdf:type schema:Person
95 sg:person.014077032075.13 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
96 schema:familyName Shen
97 schema:givenName Yunzhong
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077032075.13
99 rdf:type schema:Person
100 sg:person.016376421413.78 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
101 schema:familyName Xu
102 schema:givenName Peiliang
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016376421413.78
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-662-03976-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030279367
106 https://doi.org/10.1007/978-3-662-03976-2
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00873704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023328407
109 https://doi.org/10.1007/bf00873704
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02519147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020790169
112 https://doi.org/10.1007/bf02519147
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02521994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014075368
115 https://doi.org/10.1007/bf02521994
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02522340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018625247
118 https://doi.org/10.1007/bf02522340
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02527035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047851041
121 https://doi.org/10.1007/bf02527035
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00190-006-0032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028243288
124 https://doi.org/10.1007/s00190-006-0032-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s001900000109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041839062
127 https://doi.org/10.1007/s001900000109
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1297-9686-26-6-537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018352571
130 https://doi.org/10.1186/1297-9686-26-6-537
131 rdf:type schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1103193307 schema:CreativeWork
133 https://doi.org/10.1016/0047-259x(71)90001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040695101
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0047-259x(76)90010-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015550373
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/01621459.1939.10503549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058298322
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/01621459.1970.10481070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300554
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/01621459.1973.10481414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301107
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/02331887408801162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013047172
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/02331937408842190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058309335
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/biomet/54.1-2.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417640
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/biomet/58.3.545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418034
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/biomet/84.1.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420740
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2307/2529395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975055
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2307/2983690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103085999
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2307/3001853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070164068
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
160 schema:name Department of Surveying Engineering, Tongji University, Shiping Road 1239, Shanghai, China
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
163 schema:name Department of Geophysics, Kyoto University, 606-8502, Kyoto, Sakyo-ku, Japan
164 Disaster Prevention Research Institute, Kyoto University, 611-0011, Kyoto, Uji, Japan
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...