Distributional properties of the typical cell of stationary iterated tessellations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-06

AUTHORS

Roland Maier, Johannes Mayer, Volker Schmidt

ABSTRACT

Distributional properties are considered of the typical cell of stationary iterated tessellations (SIT), which are generated by stationary Poisson-Voronoi tessellations (SPVT) and stationary Poisson line tessellations (SPLT), respectively. Using Neveu’s exchange formula, the typical cell of SIT can be represented by those cells of its component tessellation hitting the typical cell of its initial tessellation. This provides a simulation algorithm without consideration of limits in space. It has been applied in order to estimate the probability densities of geometric characteristics of the typical cell of SIT generated by SPVT and SPLT. In particular, the probability densities of the number of vertices, the perimeter, and the area of the typical cell of such SIT have been determined. More... »

PAGES

287-302

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001860300326

DOI

http://dx.doi.org/10.1007/s001860300326

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040764171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Universit\u00e4t Ulm, Abteilung Stochastik, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier", 
        "givenName": "Roland", 
        "id": "sg:person.07746654005.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746654005.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Universit\u00e4t Ulm, Abteilung Stochastik, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayer", 
        "givenName": "Johannes", 
        "id": "sg:person.015450256757.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450256757.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Universit\u00e4t Ulm, Abteilung Stochastik, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/15326340008807577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003825123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200031053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003842243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(73)90110-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006911494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331888108801582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008623207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331888408801794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010842766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.simpat.2004.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013065838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s000186780001226x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014097239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016335255", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11657-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016335255", 
          "https://doi.org/10.1007/978-3-662-11657-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11657-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016335255", 
          "https://doi.org/10.1007/978-3-662-11657-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1019057453", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-80106-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019057453", 
          "https://doi.org/10.1007/978-3-322-80106-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-80106-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019057453", 
          "https://doi.org/10.1007/978-3-322-80106-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800009356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034471520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.52.5.1157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200028746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049765079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200031302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1425985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069489003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139086561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700989"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "Distributional properties are considered of the typical cell of stationary iterated tessellations (SIT), which are generated by stationary Poisson-Voronoi tessellations (SPVT) and stationary Poisson line tessellations (SPLT), respectively. Using Neveu\u2019s exchange formula, the typical cell of SIT can be represented by those cells of its component tessellation hitting the typical cell of its initial tessellation. This provides a simulation algorithm without consideration of limits in space. It has been applied in order to estimate the probability densities of geometric characteristics of the typical cell of SIT generated by SPVT and SPLT. In particular, the probability densities of the number of vertices, the perimeter, and the area of the typical cell of such SIT have been determined.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001860300326", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Distributional properties of the typical cell of stationary iterated tessellations", 
    "pagination": "287-302", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c22f24b386c248e8873144d257af32d86e8358631b372c33c414dd019dcbd6af"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001860300326"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040764171"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001860300326", 
      "https://app.dimensions.ai/details/publication/pub.1040764171"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s001860300326"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001860300326'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001860300326'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001860300326'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001860300326'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001860300326 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N462e1463b21048a89a25376fdb456287
4 schema:citation sg:pub.10.1007/978-3-322-80106-7
5 sg:pub.10.1007/978-3-662-11657-9
6 https://app.dimensions.ai/details/publication/pub.1016335255
7 https://app.dimensions.ai/details/publication/pub.1019057453
8 https://doi.org/10.1016/0001-8708(73)90110-2
9 https://doi.org/10.1016/j.simpat.2004.02.001
10 https://doi.org/10.1017/cbo9781139086561
11 https://doi.org/10.1017/s0001867800009356
12 https://doi.org/10.1017/s000186780001226x
13 https://doi.org/10.1017/s0021900200028746
14 https://doi.org/10.1017/s0021900200031053
15 https://doi.org/10.1017/s0021900200031302
16 https://doi.org/10.1073/pnas.52.5.1157
17 https://doi.org/10.1080/02331888108801582
18 https://doi.org/10.1080/02331888408801794
19 https://doi.org/10.1080/15326340008807577
20 https://doi.org/10.2307/1425985
21 schema:datePublished 2004-06
22 schema:datePublishedReg 2004-06-01
23 schema:description Distributional properties are considered of the typical cell of stationary iterated tessellations (SIT), which are generated by stationary Poisson-Voronoi tessellations (SPVT) and stationary Poisson line tessellations (SPLT), respectively. Using Neveu’s exchange formula, the typical cell of SIT can be represented by those cells of its component tessellation hitting the typical cell of its initial tessellation. This provides a simulation algorithm without consideration of limits in space. It has been applied in order to estimate the probability densities of geometric characteristics of the typical cell of SIT generated by SPVT and SPLT. In particular, the probability densities of the number of vertices, the perimeter, and the area of the typical cell of such SIT have been determined.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N3fa2e3de0d7746d68dec7a08e699c22f
28 Nb534f6407f6146eeb0541566827f615c
29 sg:journal.1053187
30 schema:name Distributional properties of the typical cell of stationary iterated tessellations
31 schema:pagination 287-302
32 schema:productId N24a5793bbf144b82963b273d67a40a5d
33 N3a3bafbfee214e58a718254db5ac4d9f
34 N8f3d104cb8d542d791fee4175b7b66e7
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040764171
36 https://doi.org/10.1007/s001860300326
37 schema:sdDatePublished 2019-04-10T19:50
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N622f60fe7fa14217b2503bb1697d0560
40 schema:url http://link.springer.com/10.1007/s001860300326
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N24a5793bbf144b82963b273d67a40a5d schema:name doi
45 schema:value 10.1007/s001860300326
46 rdf:type schema:PropertyValue
47 N27862f3fbd12417a832c28b8f154e17a rdf:first sg:person.01051347101.48
48 rdf:rest rdf:nil
49 N3a3bafbfee214e58a718254db5ac4d9f schema:name readcube_id
50 schema:value c22f24b386c248e8873144d257af32d86e8358631b372c33c414dd019dcbd6af
51 rdf:type schema:PropertyValue
52 N3fa2e3de0d7746d68dec7a08e699c22f schema:volumeNumber 59
53 rdf:type schema:PublicationVolume
54 N462e1463b21048a89a25376fdb456287 rdf:first sg:person.07746654005.76
55 rdf:rest Naaba77ac0d204f7f87f3917303384cd3
56 N622f60fe7fa14217b2503bb1697d0560 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N8f3d104cb8d542d791fee4175b7b66e7 schema:name dimensions_id
59 schema:value pub.1040764171
60 rdf:type schema:PropertyValue
61 Naaba77ac0d204f7f87f3917303384cd3 rdf:first sg:person.015450256757.39
62 rdf:rest N27862f3fbd12417a832c28b8f154e17a
63 Nb534f6407f6146eeb0541566827f615c schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
69 schema:name Statistics
70 rdf:type schema:DefinedTerm
71 sg:journal.1053187 schema:issn 1432-2994
72 1432-5217
73 schema:name Mathematical Methods of Operations Research
74 rdf:type schema:Periodical
75 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
76 schema:familyName Schmidt
77 schema:givenName Volker
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
79 rdf:type schema:Person
80 sg:person.015450256757.39 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
81 schema:familyName Mayer
82 schema:givenName Johannes
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450256757.39
84 rdf:type schema:Person
85 sg:person.07746654005.76 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
86 schema:familyName Maier
87 schema:givenName Roland
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07746654005.76
89 rdf:type schema:Person
90 sg:pub.10.1007/978-3-322-80106-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019057453
91 https://doi.org/10.1007/978-3-322-80106-7
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-662-11657-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016335255
94 https://doi.org/10.1007/978-3-662-11657-9
95 rdf:type schema:CreativeWork
96 https://app.dimensions.ai/details/publication/pub.1016335255 schema:CreativeWork
97 https://app.dimensions.ai/details/publication/pub.1019057453 schema:CreativeWork
98 https://doi.org/10.1016/0001-8708(73)90110-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006911494
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.simpat.2004.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013065838
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/cbo9781139086561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700989
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1017/s0001867800009356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034471520
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1017/s000186780001226x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014097239
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1017/s0021900200028746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049765079
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1017/s0021900200031053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003842243
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/s0021900200031302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805295
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1073/pnas.52.5.1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916262
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1080/02331888108801582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008623207
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1080/02331888408801794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010842766
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/15326340008807577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003825123
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/1425985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069489003
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
125 schema:name Universität Ulm, Abteilung Stochastik, D-89069, Ulm, Germany
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...