Packing small boxes into a big box View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Manfred Padberg

ABSTRACT

The three-dimensional orthogonal packing problem consists of filling a big rectangular box with as many small rectangular boxes as possible. In a recent paper G. Fasano (Alenia Aerospazio, Turin) has given a mixed-integer programming formulation of this problem. Here we extend Fasano's formulation and subject it to polyhedral analysis. The result is a more general formulation whose linear programming relaxation is a tighter approximation of the convex hull of the mixed-integer solutions to the problem than the original model. More... »

PAGES

1-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001860000066

DOI

http://dx.doi.org/10.1007/s001860000066

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004040060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Statistics & Operations Research Department, 40 West 4th Street, Room 517, New York, N.Y. 10003, USA (e-mail: mpadberg@stern.nyu.edu or manfred@padberg.com), US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padberg", 
        "givenName": "Manfred", 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "The three-dimensional orthogonal packing problem consists of filling a big rectangular box with as many small rectangular boxes as possible. In a recent paper G. Fasano (Alenia Aerospazio, Turin) has given a mixed-integer programming formulation of this problem. Here we extend Fasano's formulation and subject it to polyhedral analysis. The result is a more general formulation whose linear programming relaxation is a tighter approximation of the convex hull of the mixed-integer solutions to the problem than the original model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001860000066", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Packing small boxes into a big box", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "133fe0e4f555cbc4887ace377c46a1d4a58b1b8c22af5d9152a3cf27689c7b4d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001860000066"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004040060"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001860000066", 
      "https://app.dimensions.ai/details/publication/pub.1004040060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000479.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s001860000066"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001860000066 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N27513e9395454dd7a51b2fea6ad8e0d0
4 schema:datePublished 2000-09
5 schema:datePublishedReg 2000-09-01
6 schema:description The three-dimensional orthogonal packing problem consists of filling a big rectangular box with as many small rectangular boxes as possible. In a recent paper G. Fasano (Alenia Aerospazio, Turin) has given a mixed-integer programming formulation of this problem. Here we extend Fasano's formulation and subject it to polyhedral analysis. The result is a more general formulation whose linear programming relaxation is a tighter approximation of the convex hull of the mixed-integer solutions to the problem than the original model.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N7eee6c8ca5134bb8a8092a0f04465e54
11 Na5d7e0666635427b88163338a5fd4d3a
12 sg:journal.1053187
13 schema:name Packing small boxes into a big box
14 schema:pagination 1-21
15 schema:productId N5f64990766f247e7819bb9bb3ae5c4e8
16 N7f17e988ec464ff6bdc9b22b07b8fa60
17 Nc3dc216cbd9e46598a1f264526a93538
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004040060
19 https://doi.org/10.1007/s001860000066
20 schema:sdDatePublished 2019-04-11T00:08
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb4f6a0a90e4e446c8abeb6b691be26c7
23 schema:url http://link.springer.com/10.1007/s001860000066
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N27513e9395454dd7a51b2fea6ad8e0d0 rdf:first N690e88a8d8e043d59dcb4f71207f8d7d
28 rdf:rest rdf:nil
29 N5f64990766f247e7819bb9bb3ae5c4e8 schema:name dimensions_id
30 schema:value pub.1004040060
31 rdf:type schema:PropertyValue
32 N690e88a8d8e043d59dcb4f71207f8d7d schema:affiliation Nf05508e847dc492ead676d711a75b4c6
33 schema:familyName Padberg
34 schema:givenName Manfred
35 rdf:type schema:Person
36 N7eee6c8ca5134bb8a8092a0f04465e54 schema:volumeNumber 52
37 rdf:type schema:PublicationVolume
38 N7f17e988ec464ff6bdc9b22b07b8fa60 schema:name readcube_id
39 schema:value 133fe0e4f555cbc4887ace377c46a1d4a58b1b8c22af5d9152a3cf27689c7b4d
40 rdf:type schema:PropertyValue
41 Na5d7e0666635427b88163338a5fd4d3a schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 Nb4f6a0a90e4e446c8abeb6b691be26c7 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nc3dc216cbd9e46598a1f264526a93538 schema:name doi
46 schema:value 10.1007/s001860000066
47 rdf:type schema:PropertyValue
48 Nf05508e847dc492ead676d711a75b4c6 schema:name Statistics & Operations Research Department, 40 West 4th Street, Room 517, New York, N.Y. 10003, USA (e-mail: mpadberg@stern.nyu.edu or manfred@padberg.com), US
49 rdf:type schema:Organization
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
54 schema:name Numerical and Computational Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1053187 schema:issn 1432-2994
57 1432-5217
58 schema:name Mathematical Methods of Operations Research
59 rdf:type schema:Periodical
 




Preview window. Press ESC to close (or click here)


...