Packing small boxes into a big box View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Manfred Padberg

ABSTRACT

The three-dimensional orthogonal packing problem consists of filling a big rectangular box with as many small rectangular boxes as possible. In a recent paper G. Fasano (Alenia Aerospazio, Turin) has given a mixed-integer programming formulation of this problem. Here we extend Fasano's formulation and subject it to polyhedral analysis. The result is a more general formulation whose linear programming relaxation is a tighter approximation of the convex hull of the mixed-integer solutions to the problem than the original model. More... »

PAGES

1-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001860000066

DOI

http://dx.doi.org/10.1007/s001860000066

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004040060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Statistics & Operations Research Department, 40 West 4th Street, Room 517, New York, N.Y. 10003, USA (e-mail: mpadberg@stern.nyu.edu or manfred@padberg.com), US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padberg", 
        "givenName": "Manfred", 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "The three-dimensional orthogonal packing problem consists of filling a big rectangular box with as many small rectangular boxes as possible. In a recent paper G. Fasano (Alenia Aerospazio, Turin) has given a mixed-integer programming formulation of this problem. Here we extend Fasano's formulation and subject it to polyhedral analysis. The result is a more general formulation whose linear programming relaxation is a tighter approximation of the convex hull of the mixed-integer solutions to the problem than the original model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001860000066", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Packing small boxes into a big box", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "133fe0e4f555cbc4887ace377c46a1d4a58b1b8c22af5d9152a3cf27689c7b4d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001860000066"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004040060"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001860000066", 
      "https://app.dimensions.ai/details/publication/pub.1004040060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000479.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s001860000066"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001860000066'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001860000066 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4add2805bc7843e98ab88134063f2b7c
4 schema:datePublished 2000-09
5 schema:datePublishedReg 2000-09-01
6 schema:description The three-dimensional orthogonal packing problem consists of filling a big rectangular box with as many small rectangular boxes as possible. In a recent paper G. Fasano (Alenia Aerospazio, Turin) has given a mixed-integer programming formulation of this problem. Here we extend Fasano's formulation and subject it to polyhedral analysis. The result is a more general formulation whose linear programming relaxation is a tighter approximation of the convex hull of the mixed-integer solutions to the problem than the original model.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N84f435c8aff14ababf4ac42feba790cc
11 Neebf7eecf24949bf9a13b20ce3017a14
12 sg:journal.1053187
13 schema:name Packing small boxes into a big box
14 schema:pagination 1-21
15 schema:productId N0a9e55fee6c344bc81cbb9837f516c13
16 Nce2eea01d76d477c9972691fe730e1c3
17 Nd090157b523640dfb84786c1dc41c716
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004040060
19 https://doi.org/10.1007/s001860000066
20 schema:sdDatePublished 2019-04-11T00:08
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N5e230f39b3864c07976f190df5c533f6
23 schema:url http://link.springer.com/10.1007/s001860000066
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N07390caccd0e4d2bb130b0b16ee0a294 schema:name Statistics & Operations Research Department, 40 West 4th Street, Room 517, New York, N.Y. 10003, USA (e-mail: mpadberg@stern.nyu.edu or manfred@padberg.com), US
28 rdf:type schema:Organization
29 N0a9e55fee6c344bc81cbb9837f516c13 schema:name doi
30 schema:value 10.1007/s001860000066
31 rdf:type schema:PropertyValue
32 N4add2805bc7843e98ab88134063f2b7c rdf:first Ne8cc82f0bc484d6897acf83b0886c02f
33 rdf:rest rdf:nil
34 N5e230f39b3864c07976f190df5c533f6 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N84f435c8aff14ababf4ac42feba790cc schema:volumeNumber 52
37 rdf:type schema:PublicationVolume
38 Nce2eea01d76d477c9972691fe730e1c3 schema:name readcube_id
39 schema:value 133fe0e4f555cbc4887ace377c46a1d4a58b1b8c22af5d9152a3cf27689c7b4d
40 rdf:type schema:PropertyValue
41 Nd090157b523640dfb84786c1dc41c716 schema:name dimensions_id
42 schema:value pub.1004040060
43 rdf:type schema:PropertyValue
44 Ne8cc82f0bc484d6897acf83b0886c02f schema:affiliation N07390caccd0e4d2bb130b0b16ee0a294
45 schema:familyName Padberg
46 schema:givenName Manfred
47 rdf:type schema:Person
48 Neebf7eecf24949bf9a13b20ce3017a14 schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
54 schema:name Numerical and Computational Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1053187 schema:issn 1432-2994
57 1432-5217
58 schema:name Mathematical Methods of Operations Research
59 rdf:type schema:Periodical
 




Preview window. Press ESC to close (or click here)


...