An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Zhilin Kang, Zhongfei Li

ABSTRACT

This paper proposes a unified framework to solve distributionally robust mean-risk optimization problem that simultaneously uses variance, value-at-risk (VaR) and conditional value-at-risk (CVaR) as a triple-risk measure. It provides investors with more flexibility to find portfolios in the sense that it allows investors to optimize a return-risk profile in the presence of estimation error. We derive a closed-form expression for the optimal portfolio strategy to the robust mean-multiple risk portfolio selection model under distribution and mean return ambiguity (RMP). Specially, the robust mean-variance, robust maximum return, robust minimum VaR and robust minimum CVaR efficient portfolios are all special instances of RMP portfolios. We analytically and numerically show that the resulting portfolio weight converges to the minimum variance portfolio when the level of ambiguity aversion is in a high value. Using numerical experiment with simulated data, we demonstrate that our robust portfolios under ambiguity are more stable over time than the non-robust portfolios. More... »

PAGES

169-195

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00186-017-0614-0

DOI

http://dx.doi.org/10.1007/s00186-017-0614-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092141252


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Banking, Finance and Investment", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huaqiao University", 
          "id": "https://www.grid.ac/institutes/grid.411404.4", 
          "name": [
            "School of Mathematics, Sun Yat-sen University, 510275, Guangzhou, People\u2019s Republic of China", 
            "School of Mathematical Science, Huaqiao University, 362021, Fujian, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Zhilin", 
        "id": "sg:person.015246444751.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015246444751.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Sun Yat-sen Business School, Sun Yat-sen University, 510275, Guangzhou, People\u2019s Republic of China", 
            "Xinhua College of Sun Yat-sen University, 510520, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zhongfei", 
        "id": "sg:person.014665762037.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665762037.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1964.tb02865.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000454530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9965.00068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003263023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2004.01.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003795590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02282040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010241328", 
          "https://doi.org/10.1007/bf02282040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02282040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010241328", 
          "https://doi.org/10.1007/bf02282040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2013.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010573809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-013-0329-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014647551", 
          "https://doi.org/10.1007/s10957-013-0329-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1952.tb01525.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015382472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/494575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016121151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02102412.2010.10779687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016410009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1540-6261.00580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017329576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2015.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020990844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331934.2015.1132216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021646699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-009-0515-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030399306", 
          "https://doi.org/10.1007/s10479-009-0515-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-009-0515-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030399306", 
          "https://doi.org/10.1007/s10479-009-0515-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11750-013-0303-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033140196", 
          "https://doi.org/10.1007/s11750-013-0303-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:anor.0000045281.41041.ed", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038242326", 
          "https://doi.org/10.1023/b:anor.0000045281.41041.ed"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orl.2014.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041046543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2014.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045536481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9965.2010.00417.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047781982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9965.2010.00417.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047781982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697680701448456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048152651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-405x(80)90007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049360230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.jam.2250049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050934387", 
          "https://doi.org/10.1057/palgrave.jam.2250049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1889(01)00041-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053043628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/296296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058606122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rfs/hhl003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060005862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rfs/hhm075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060005956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.1040.0201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064714233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.1120.1615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064715761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.28.1.1.14260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064724362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1080.0566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1080.0684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1090.0741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1110.0950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.51.4.543.16101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21314/jor.2000.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068977586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511753886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098688589"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "This paper proposes a unified framework to solve distributionally robust mean-risk optimization problem that simultaneously uses variance, value-at-risk (VaR) and conditional value-at-risk (CVaR) as a triple-risk measure. It provides investors with more flexibility to find portfolios in the sense that it allows investors to optimize a return-risk profile in the presence of estimation error. We derive a closed-form expression for the optimal portfolio strategy to the robust mean-multiple risk portfolio selection model under distribution and mean return ambiguity (RMP). Specially, the robust mean-variance, robust maximum return, robust minimum VaR and robust minimum CVaR efficient portfolios are all special instances of RMP portfolios. We analytically and numerically show that the resulting portfolio weight converges to the minimum variance portfolio when the level of ambiguity aversion is in a high value. Using numerical experiment with simulated data, we demonstrate that our robust portfolios under ambiguity are more stable over time than the non-robust portfolios.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00186-017-0614-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution", 
    "pagination": "169-195", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e6729e708435ba06899467f24b42fb5d1570238e0745a2ed4ccd61ef422e67d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00186-017-0614-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092141252"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00186-017-0614-0", 
      "https://app.dimensions.ai/details/publication/pub.1092141252"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00186-017-0614-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0614-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0614-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0614-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0614-0'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00186-017-0614-0 schema:about anzsrc-for:15
2 anzsrc-for:1502
3 schema:author N372a843f8a28495e8d7b1ea4fdbe5d97
4 schema:citation sg:pub.10.1007/bf02282040
5 sg:pub.10.1007/s10479-009-0515-6
6 sg:pub.10.1007/s10957-013-0329-1
7 sg:pub.10.1007/s11750-013-0303-y
8 sg:pub.10.1023/b:anor.0000045281.41041.ed
9 sg:pub.10.1057/palgrave.jam.2250049
10 https://doi.org/10.1016/0304-405x(80)90007-0
11 https://doi.org/10.1016/j.ejor.2004.01.040
12 https://doi.org/10.1016/j.ejor.2013.10.028
13 https://doi.org/10.1016/j.ejor.2014.02.016
14 https://doi.org/10.1016/j.ejor.2015.09.005
15 https://doi.org/10.1016/j.orl.2014.02.002
16 https://doi.org/10.1016/s0165-1889(01)00041-0
17 https://doi.org/10.1017/cbo9780511753886
18 https://doi.org/10.1080/02102412.2010.10779687
19 https://doi.org/10.1080/02331934.2015.1132216
20 https://doi.org/10.1080/14697680701448456
21 https://doi.org/10.1086/296296
22 https://doi.org/10.1093/rfs/hhl003
23 https://doi.org/10.1093/rfs/hhm075
24 https://doi.org/10.1111/1467-9965.00068
25 https://doi.org/10.1111/1540-6261.00580
26 https://doi.org/10.1111/j.1467-9965.2010.00417.x
27 https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
28 https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
29 https://doi.org/10.1155/2014/494575
30 https://doi.org/10.1287/mnsc.1040.0201
31 https://doi.org/10.1287/mnsc.1120.1615
32 https://doi.org/10.1287/moor.28.1.1.14260
33 https://doi.org/10.1287/opre.1080.0566
34 https://doi.org/10.1287/opre.1080.0684
35 https://doi.org/10.1287/opre.1090.0741
36 https://doi.org/10.1287/opre.1110.0950
37 https://doi.org/10.1287/opre.51.4.543.16101
38 https://doi.org/10.21314/jor.2000.038
39 schema:datePublished 2018-04
40 schema:datePublishedReg 2018-04-01
41 schema:description This paper proposes a unified framework to solve distributionally robust mean-risk optimization problem that simultaneously uses variance, value-at-risk (VaR) and conditional value-at-risk (CVaR) as a triple-risk measure. It provides investors with more flexibility to find portfolios in the sense that it allows investors to optimize a return-risk profile in the presence of estimation error. We derive a closed-form expression for the optimal portfolio strategy to the robust mean-multiple risk portfolio selection model under distribution and mean return ambiguity (RMP). Specially, the robust mean-variance, robust maximum return, robust minimum VaR and robust minimum CVaR efficient portfolios are all special instances of RMP portfolios. We analytically and numerically show that the resulting portfolio weight converges to the minimum variance portfolio when the level of ambiguity aversion is in a high value. Using numerical experiment with simulated data, we demonstrate that our robust portfolios under ambiguity are more stable over time than the non-robust portfolios.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N5b126a9f7e054df0af38a8259d93cf67
46 N903b0a5211fb475999bb369c3a888052
47 sg:journal.1053187
48 schema:name An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution
49 schema:pagination 169-195
50 schema:productId N699c886bbaa547d880ec22f6c286b312
51 N9b069ae70a2846e78da5dc750bfcf154
52 Nf9f66b88fd074cea9a2f20c5993b8fcc
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092141252
54 https://doi.org/10.1007/s00186-017-0614-0
55 schema:sdDatePublished 2019-04-10T21:53
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nfb455021dbf14bec9cd7d47192d48c30
58 schema:url https://link.springer.com/10.1007%2Fs00186-017-0614-0
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N372a843f8a28495e8d7b1ea4fdbe5d97 rdf:first sg:person.015246444751.56
63 rdf:rest N4bb33c0ff6304c87861eaf9f469c7b2c
64 N4bb33c0ff6304c87861eaf9f469c7b2c rdf:first sg:person.014665762037.07
65 rdf:rest rdf:nil
66 N5b126a9f7e054df0af38a8259d93cf67 schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 N699c886bbaa547d880ec22f6c286b312 schema:name readcube_id
69 schema:value 3e6729e708435ba06899467f24b42fb5d1570238e0745a2ed4ccd61ef422e67d
70 rdf:type schema:PropertyValue
71 N903b0a5211fb475999bb369c3a888052 schema:volumeNumber 87
72 rdf:type schema:PublicationVolume
73 N9b069ae70a2846e78da5dc750bfcf154 schema:name doi
74 schema:value 10.1007/s00186-017-0614-0
75 rdf:type schema:PropertyValue
76 Nf9f66b88fd074cea9a2f20c5993b8fcc schema:name dimensions_id
77 schema:value pub.1092141252
78 rdf:type schema:PropertyValue
79 Nfb455021dbf14bec9cd7d47192d48c30 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
82 schema:name Commerce, Management, Tourism and Services
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
85 schema:name Banking, Finance and Investment
86 rdf:type schema:DefinedTerm
87 sg:journal.1053187 schema:issn 1432-2994
88 1432-5217
89 schema:name Mathematical Methods of Operations Research
90 rdf:type schema:Periodical
91 sg:person.014665762037.07 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
92 schema:familyName Li
93 schema:givenName Zhongfei
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665762037.07
95 rdf:type schema:Person
96 sg:person.015246444751.56 schema:affiliation https://www.grid.ac/institutes/grid.411404.4
97 schema:familyName Kang
98 schema:givenName Zhilin
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015246444751.56
100 rdf:type schema:Person
101 sg:pub.10.1007/bf02282040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010241328
102 https://doi.org/10.1007/bf02282040
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10479-009-0515-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030399306
105 https://doi.org/10.1007/s10479-009-0515-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10957-013-0329-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014647551
108 https://doi.org/10.1007/s10957-013-0329-1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11750-013-0303-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033140196
111 https://doi.org/10.1007/s11750-013-0303-y
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/b:anor.0000045281.41041.ed schema:sameAs https://app.dimensions.ai/details/publication/pub.1038242326
114 https://doi.org/10.1023/b:anor.0000045281.41041.ed
115 rdf:type schema:CreativeWork
116 sg:pub.10.1057/palgrave.jam.2250049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050934387
117 https://doi.org/10.1057/palgrave.jam.2250049
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0304-405x(80)90007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049360230
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ejor.2004.01.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003795590
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ejor.2013.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010573809
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ejor.2014.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045536481
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ejor.2015.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020990844
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.orl.2014.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041046543
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0165-1889(01)00041-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053043628
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1017/cbo9780511753886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098688589
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/02102412.2010.10779687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016410009
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/02331934.2015.1132216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021646699
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/14697680701448456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048152651
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1086/296296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058606122
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1093/rfs/hhl003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005862
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1093/rfs/hhm075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005956
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1111/1467-9965.00068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003263023
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1111/1540-6261.00580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017329576
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/j.1467-9965.2010.00417.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047781982
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/j.1540-6261.1952.tb01525.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015382472
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1111/j.1540-6261.1964.tb02865.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000454530
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1155/2014/494575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016121151
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1287/mnsc.1040.0201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064714233
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1287/mnsc.1120.1615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064715761
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1287/moor.28.1.1.14260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064724362
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1287/opre.1080.0566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726035
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1287/opre.1080.0684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726146
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1287/opre.1090.0741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726203
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1287/opre.1110.0950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726506
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1287/opre.51.4.543.16101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731637
174 rdf:type schema:CreativeWork
175 https://doi.org/10.21314/jor.2000.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068977586
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
178 schema:name Sun Yat-sen Business School, Sun Yat-sen University, 510275, Guangzhou, People’s Republic of China
179 Xinhua College of Sun Yat-sen University, 510520, Guangzhou, People’s Republic of China
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.411404.4 schema:alternateName Huaqiao University
182 schema:name School of Mathematical Science, Huaqiao University, 362021, Fujian, People’s Republic of China
183 School of Mathematics, Sun Yat-sen University, 510275, Guangzhou, People’s Republic of China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...